Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(11): 14006-14014, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38450480

RESUMEN

Halide perovskites have emerged as promising candidates in X-ray detection due to their strong X-ray absorption and excellent optoelectronic properties. The development of sensitive and stable flat-panel X-ray detectors with high resolution is crucial for practical applications. In this paper, we introduce a novel flat-panel X-ray detector that integrates quasi-two-dimensional (2D) Ruddlesden-Popper (RP) perovskite with a pixeled thin film transistor (TFT) backplane. We incorporate 2,5-dibromopyrimidine (DBPM) as an additive to passivate the Lewis acid defects in the quasi-2D RP perovskite. This modification results in suppressed ion migration, improved optoelectronic performance, and enhanced operational stability of the device. Impressively, the activation energy of the RP perovskite increases from 0.96 to 1.35 eV with the DBPM additive. As a result, X-ray detectors exhibit a high sensitivity of ∼13,600 µC Gyair-1 cm-2, a low detection limit of 6.56 nGyair s-1, and excellent operational stability. Moreover, the flat-panel detectors demonstrate a high spatial resolution of 3.7 line pairs per millimeter and excellent X-ray imaging properties under a remarkably low X-ray dose of ∼50 µGyair, which is just half of the X-ray dose typically used in commercial equipment. This study opens new avenues for the development of flat-panel perovskite X-ray detectors with significant potential for various applications.

2.
Small ; 19(50): e2304201, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658508

RESUMEN

2D Ruddlesden-Popper (RP) perovskites have been intensively investigated due to their superior stability and outstanding optoelectrical properties. However, investigations on 2D RP perovskites are mainly focused on A-site substituted perovskites and few reports are on X-site substituted perovskites especially in X-ray detection field. Here, X-site substituted 2D RP perovskite Cs2 Pb(SCN)2 Br2 polycrystalline wafers are prepared and systematically studied for X-ray detection. The obtained wafers show a large resistivity of 2.0 × 1010 Ω cm, a high ion activation energy of 0.75 eV, a small current drift of 2.39 × 10-6 nA cm-1 s-1 V-1 , and charge carrier mobility-lifetime product under X-ray as high as 1.29 × 10-4 cm2 V-1 . These merits enable Cs2 Pb(SCN)2 Br2 wafer detectors with a sensitivity of 216.3 µC Gyair -1 cm-2 , a limit of detection of 42.4 nGyair s-1 , and good imaging ability with high spatial resolution of 1.08 lp mm-1 . In addition, Cs2 Pb(SCN)2 Br2 wafer detectors demonstrate excellent operational stability under high working field up to 2100 V cm-1 after continuous X-ray irradiation with a total dose of 45.2 Gyair . The promising features such as short octahedral spacing and weak ion migration will open up a new perspective and opportunity for SCN-based 2D perovskites in X-ray detection.

3.
J Phys Chem Lett ; 14(13): 3313-3319, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36988394

RESUMEN

Two-dimensional (2D) Ruddlesden-Popper (RP) metal halide perovskites have emerged as a promising material for X-ray detection. However, defects and ion migration generated nonradiative recombination and high dark current could cause severe performance degradation, which hinders their application. Herein, rubrene was added to the precursor solution of BA2MA3Pb4I13 to modulate the performance of the 2D RP perovskite X-ray detectors. The cation-π interaction between rubrene and perovskite could passivate the defects and inhibit the ion migration, resulting in improved performance and stability. The detectors made with rubrene exhibited a sensitivity of 354.30 µC·Gyair-1 cm-2 and a detection limit of 112.85 nGyair s-1. This work highlights the synergistic effect of rubrene in defect passivation and ion migration inhibition, providing a facile approach toward sensitive perovskite X-ray detectors.

4.
J Phys Chem Lett ; 13(51): 11928-11935, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36533964

RESUMEN

Perovskite flat-panel X-ray detectors are promising products for realizing low-dose medical imaging, a nondestructive test, and security inspection. However, the perovskite X-ray imager still faces intractable problems such as severe baseline drift, a low signal-to-noise ratio, and rapid performance degradation, which were involved by the notorious intrinsic ion migration of the perovskite functional layer. In this work, sensitive, stable, and portable pixel quasi-two-dimensional (2D) Ruddlesden-Popper (RP) perovskite X-ray imagers were obtained by an advanced solvent-free laminated fabrication approach. A-Site cation engineering of RP perovskites provides a hint for solving the trade-off between stability and detection performance, resulting in a stable pixel X-ray imager that shows a sensitivity of ∼7000 µC Gyair-1 cm-2, a detection limit of 7.8 nGyair s-1, and good 2D multipixel X-ray imaging. This work demonstrates both a high-performance, stable X-ray imager and its robust fabrication, paving the way for adopting a RP perovskite imager as novel flat-panel X-ray detectors.

5.
J Phys Chem Lett ; 13(1): 371-377, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34985294

RESUMEN

Metal halide perovskite and its derivatives show great promise in X-ray detection. However, large-scale fabrication of high-quality thick perovskite films is still full of challenges due to the complicated crystal nucleation process that always introduces lots of cracks or pinholes in the final perovskite film. Here, a MA3Bi2I9 film was fabricated by the cost-effective, scalable spraying process, and MACl was used as an additive to effectively tune the crystallization process. As a result, a dense MA3Bi2I9 film constituted by large grains was obtained, which has a high carrier mobility of ∼1 cm2 V-1 s-1 and a large activation energy (Ea) for ion migration of 0.91 eV. Thanks to the outstanding optoelectronic characteristics, X-ray detectors with a configuration of ITO/MA3Bi2I9/Au show a sensitivity of 35 µC Gyair-1 cm-2 and a limit of detection (LoD) of 0.14 µGyairs-1, which is outstanding compared with commercial α-Se detectors.

6.
J Phys Chem Lett ; 12(29): 6961-6966, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34283605

RESUMEN

The halide perovskite X-ray detector can meet the urgent needs of low-dose medical imaging by X-rays. However, there is still a pressing challenge in lacking robust methods for large-scale fabrication of high-quality perovskite films with tunable thickness. Here we report a laminated fabrication of polycrystalline MAPbI3 by using solvent-free liquid perovskite molten-salt (PMS), that offers reduced toxic issue, scalable fabrication, and highly tunability in film thickness. Nylon membrane was chosen as a scaffold for the infiltration of PMS, which simultaneously acts as a physical barrier to suppress the ionic migration in the MAPbI3-nylon composite (denoted as MAPbI3-LLP). The enhanced material properties result in good stability and high performance of X-ray detectors that show low detection limit and high sensitivity. Additionally, single gamma-ray photon detection was realized by MAPbI3-LLP detectors. The promising performance characteristics of such polycrystalline detectors can accelerate the adoption of polycrystalline perovskites in X-ray imaging and gamma-ray detection.

7.
Nano Lett ; 21(9): 3947-3955, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33881887

RESUMEN

Organolead trihalide perovskite single crystals (SCs) offer unprecedented opportunity for X-ray and visible light detection. Nevertheless, it remains a challenge to keep simultaneous high-performance and stability at a high-temperature working mode. Herein, formamidinium lead bromide (FAPbBr3) SCs are developed to successfully address these issues. Low-temperature crystallized induced FAPbBr3 SCs possess an excellent mobility-lifetime product and an ultralow surface charge recombination velocity, thus exhibiting an X-ray dose rate as low as 0.3 µGyair s-1 as a sensitive radiation detector. Furthermore, it also contributes a specific detectivity as high as 3.5 × 1012 cm Hz1/2 W-1, keeping stable at high-temperature of 460 K as a photodetector. A prototype of an imaging system with diffuse reflection mode is constructed using detectors as receivers, enabling defined scanning images in a high temperature environment. The bifunctional FAPbBr3 SC detectors will motivate new strategies for stable detection in an extreme space environment.

8.
J Phys Chem Lett ; 12(7): 1778-1785, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33576232

RESUMEN

Direct X-ray detectors based on metal halide perovskites and their derivatives exhibit high sensitivity and low limit of detection (LoD). Compared with three-dimensional (3D) hybrid lead halide perovskites, low-dimensional A3Bi2I9 perovskite derivatives (A = Cs, Rb, NH4, CH3NH3(MA)) present better stability, greater environmental friendliness, and comparable X-ray detection performance. Here, we report FA3Bi2I9 (FA= CH(NH2)2) single crystals (SCs) as a new member of the A3Bi2I9 series for X-ray detection, which were prepared by the nucleation-controlled secondary solution constant temperature evaporation (SSCE) method. Centimeter-sized FA3Bi2I9 SCs show a full width at half-maximum (fwhm) of 0.0096°, which is superior to that of recently reported Cs3Bi2I9 (0.058°) and MA3Bi2I9 SCs (0.024°) obtained by inverse temperature crystallization (ITC). The as-grown FA3Bi2I9 SC shows a large resistivity of 7.8 × 1010 Ω cm and a high ion migration activation energy (Ea) of 0.56 eV, which can guarantee a low noise level and good operational stability under a large external bias. The FA3Bi2I9 SC detector exhibits a LoD of 0.2 µGyair s-1, a sensitivity of 598.1 µC Gyair -1 cm -2, and an X-ray detection efficiency of 33.5%, which are much better than those of the commercialized amorphous selenium detector. Results presented here will provide a new lead-free perovskite-type material to achieve green, sensitive, and stable X-ray detectors.

9.
J Phys Chem Lett ; 11(19): 7939-7945, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32842746

RESUMEN

The poor attenuation capability of high-energy X-ray photons hinders the application of X-ray detectors in medical and astrophysical areas. Halide-based perovskites are promising candidates for X-ray detection because of their improved sensitivity. However, their inferior attenuation coefficient is still unsatisfactory for broadband X-ray detection. Here, a new kind of X-ray detection material, AgBi2I7 rudorffite single crystal (SC), is prepared and applied in X-ray detection for the first time, and it shows a higher attenuation coefficient than halide-based perovskites, commercialized a-Se, and the currently outstanding Cd0.9Zn0.1Te (CZT). The AgBi2I7 rudorffite SCs possess outstanding electric properties and excellent stability. AgBi2I7-SC detectors demonstrate a limit of detection (LoD) of 72 nGyair s-1 and a sensitivity of 282.5 µC Gyair-1cm-2 to X-rays and show only a slight performance degradation after ontinuous X-ray irradiation with a total dose of 58 Gyair. This work opens up a new perspective and broad opportunities for halide rudorffite in X-ray detection.

10.
Adv Mater ; 32(31): e2001981, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32588518

RESUMEN

X-ray detectors are widely utilized in medical diagnostics and nondestructive product inspection. Halide perovskites are recently demonstrated as excellent candidates for direct X-ray detection. However, it is still challenging to obtain high quality perovskites with millimeter-thick over a large area for high performance, stable X-ray detectors. Here, methylammonium bismuth iodide (MA3 Bi2 I9 ) polycrystalline pellets (PPs) are developed by a robust, cost effective, and scalable cold isostatic-pressing for fabricating X-ray detectors with low limit of detection (LoD) and superior operational stability. The MA3 Bi2 I9 -PPs possess a high resistivity of 2.28 × 1011 Ω cm and low dark carrier concentration of ≈107 cm-3 , and balanced mobility of ≈2 cm2 V-1 s-1 for electrons and holes. These merits enable a sensitivity of 563 µC Gyair -1 cm-2 , a detection efficiency of 28.8%, and an LoD of 9.3 nGyair s-1 for MA3 Bi2 I9 -PPs detectors, and the LoD is much lower than the dose rate required for X-ray diagnostics used currently (5.5 µGyair s-1 ). In addition, the MA3 Bi2 I9 -PPs detectors work stably under high working bias field up to 2000 V cm-1 after sensing an integrated dose >320 Gyair with continuous X-ray radiation, demonstrating its competitive advantage in practical application. These findings provide an approach to explore a new generation of low LoD, stable and green X-ray detectors based on MA3 Bi2 I9 -PPs.

11.
ACS Appl Mater Interfaces ; 11(47): 44233-44240, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31696708

RESUMEN

Commercialization of perovskite solar cells (PSCs) requires developing high-efficiency devices with good stability. Ionic defects existing in the perovskite layer can serve as nonradiative recombination centers to deteriorate the performance of PSCs and can introduce chemical degradation of the perovskite material introducing instability issues. Here, passivation molecules with various electron density distributions (EDD) are employed as an ideal model to reveal the role of EDD on defect passivation in perovskite thin films. Power conversion efficiency (PCE) exceeding 21% with good stability in humid air was obtained for planar PSCs with the 4-aminobenzonitrile (ABN) additive, higher than the reference PSCs with a PCE of 20.22%. The improved stability and performance features are attributed to the efficient passivation for charged defects in perovskites by adding ABN, which guarantees a smaller Urbach energy, longer carrier lifetime, and less traps in the perovskite films.

12.
Environ Entomol ; 39(6): 1705-14, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22182533

RESUMEN

Outbreaks of the Nilaparvata lugens (Stål), have occurred frequently in China during the past few years, resulting in a broad and significant reduction in rice yield. N. lugens immigrate into China each spring from Southeast Asia, and the Guangxi Zhuang Autonomous Region is the first area affected. Light trap catches for the early season period (March-June) in Guangxi for the past 30 yr have been analyzed, and the catch sequences for five observation stations (Longzhou, Hepu, Yongning Yongfu, and Quanzhou) were studied in detail. It was found that during the past 10 yr the first appearance of N. lugens at light traps occurs earlier, there is a higher frequency of days with large light-trap catches, and catches in southern Guangxi are larger. Recently light-trap catches have also increased in northern Guangxi. It is concluded that the increasing number of immigrants from overseas is one of the primary reasons for the increase in N. lugens outbreaks in the past 10 yr. Global warming, and specifically winter temperature increases, appears to be for a factor accelerating outbreaks of N. lugens in Asia.


Asunto(s)
Cambio Climático , Hemípteros , Animales , China , Femenino , Dinámica Poblacional , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...