Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629954

RESUMEN

Glass fibers are widely used in cement-based precast products, given the reinforcing requirements for toughness and strength. However, inferior alkali resistance hinders the effectiveness of glass fibers in reinforcing cement-based materials. In this paper, nanoparticle coatings were applied on the surface of alkali-resistant glass fiber (ARGF) as a protective layer via the in situ chemical reaction of oleic acid (OA) and potassium permanganate (PP). The morphology and constituents of the as-prepared ARGFs were examined using scanning electron microscopy (SEM) and obtaining X-ray photoelectron spectroscopy (XPS) measurements. Mass loss and strength retention were investigated to characterize alkali resistance of modified ARGFs. Results showed that ARGFs could be optimally coated by a layer of MnO2-based nanoparticles consisting of approximately 70% MnO2, 18% MnO, and 12% MnSiO3, when modified with an optimum OA to PP ratio of 10 for 24 h. The dissolution of ARGFs matrix in 4% and 10% NaOH solutions were distinctly delayed to 28 d, as a consequence of the introduction of the MnO2-based nanoparticle layer, compared with nontreated ARGF occurring at 3 d in 4% NaOH solution. For the optimally modified ARGFs, the mass loss was controlled to 1.76% and 2.91% after 90 d of corrosion in 4% and 10% NaOH solutions, and the retention of tensile strength was increased by approximately 25%. With respect to the increment in alkali-resistant performance, the modified ARGFs can be promising candidates for wide applications in alkaline cement-based products.

2.
RSC Adv ; 11(31): 18818-18826, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35478619

RESUMEN

Glass fiber-reinforced cementitious material is one of the significant components in structural materials playing vital roles in enhancing the tensile and flexural behavior of cement-based quasi-brittle materials. Compared with carbon and polymer fibers, its intrinsic similar silicate-based composition to cement was endowed with better bonding properties and compatibility with cement-based materials. However, the poor alkali resistance of glass fibers restrained their potential development for spreading to applications in construction fields. In this study, dopamine-modified glass fibers (DP) were self-polymerized at ambient temperature by a facile method for enhancing the alkali resistance of glass fibers. Scanning electron microscopy and X-ray photoelectron spectroscopy were utilized for characterizing DP. The duration of reaction and fiber to solution ratio were adjusted with an optimal reaction time of 12 h and fiber to solution ratio of 0.12 g ml-1 acquired. Alkali resistance was measured by strength retention tests in both mortar and sodium hydroxide solution. Compared with untreated glass fibers (UN), DP exhibited a distinct improvement in strength retention rate of 37.1% and 18.9% under mortar and sodium hydroxide solution environments, respectively. Also, flexural strength tests of DP-reinforced cement were conducted, and its strength was increased in comparison with that of UN-reinforced cement by 58.2%. As a consequence, a novel simple method for improving the alkali resistance of glass fibers was proposed and is anticipated to promote the development and applications of glass-fiber reinforced cement-based materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA