Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972640

RESUMEN

Lipid nanoparticle-mediated co-delivery of siRNA and small molecule holds a great potential to treat metabolic dysfunction-associated steatotic liver disease (MASLD). However, targeted delivery of therapeutics to hepatocytes remains challenging. Taking the advantage of rising low density lipoprotein receptor/very-low density lipoprotein receptor (LDLR/VLDR) levels in MASLD, the biological fate of dinonylamine-ethylene glycol chlorophosphate-1-nonanol (DNNA-COP-NA) based lipid nanoparticles (LNPs) was oriented to liver tissues via apolipoprotein E (ApoE)-LDLR/VLDLR pathway. We then adopted a three-round screening strategy to optimize the formulation with both high potency and selectivity to deliver siRNA-HIF-1α (siHIF1α) and silibinin (SLB) payloads to hepatocytes. The optimized SLB/siHIF1α-LNPs mediates great siRNA delivery and transfection of hepatocytes. In high fat diet (HFD)- and carbon tetrachloride (CCl4)-induced mouse models of MASLD, SLB/siHIF1α-LNPs enabled the silencing of hypoxia inducible factor-1α (HIF-1α), a therapeutic target primarily expressed by hepatocytes, leading to significantly reduced inflammation and liver fibrosis synergized with SLB. Moreover, it is demonstrated the hepatocyte-targeting delivery of SLB/siHIF1α-LNPs has the potential to restore the immune homeostasis by modulating the population of Tregs and cytotoxic T cells in spleen. This proof-of-concept study enable siRNA and small molecule co-delivery to hepatocytes through intrinsic variation of targeting receptors for MASLD therapy.

2.
Adv Sci (Weinh) ; 11(18): e2309748, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460157

RESUMEN

Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.


Asunto(s)
Terapia Genética , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/administración & dosificación , Terapia Genética/métodos , Transfección/métodos , Administración por Inhalación , Enfermedades Pulmonares/terapia , Enfermedades Pulmonares/genética , Técnicas de Transferencia de Gen , Pulmón/metabolismo , Animales
3.
Nanomedicine ; 58: 102743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484918

RESUMEN

Cancer-associated fibroblasts (CAFs) play a crucial role in creating an immunosuppressive environment and remodeling the extracellular matrix within tumors, leading to chemotherapy resistance and limited immune cell infiltration. To address these challenges, integrating CAFs deactivation into immunogenic chemotherapy may represent a promising approach to the reversal of immune-excluded tumor. We developed a tumor-targeted nanomedicine called the glutathione-responsive nanocomplex (GNC). The GNC co-loaded dasatinib, a CAF inhibitor, and paclitaxel, a chemotherapeutic agent, to deactivate CAFs and enhance the effects of immunogenic chemotherapy. Due to the modification with hyaluronic acid, the GNC preferentially accumulated in the tumor periphery and responsively released cargos, mitigating the tumor stroma as well as overcoming chemoresistance. Moreover, GNC treatment exhibited remarkable immunostimulatory efficacy, including CD8+ T cell expansion and PD-L1 downregulation, facilitating immune checkpoint blockade therapy. In summary, the integration of CAF deactivation and immunogenic chemotherapy using the GNC nanoplatform holds promise for rebuilding immune-excluded tumors.


Asunto(s)
Fibroblastos Asociados al Cáncer , Paclitaxel , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/metabolismo , Animales , Humanos , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Dasatinib/farmacología , Dasatinib/uso terapéutico , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Línea Celular Tumoral , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Femenino , Glutatión/metabolismo
4.
Pharmacol Ther ; 250: 108527, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37703952

RESUMEN

Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.

5.
Biomater Sci ; 11(10): 3709-3725, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37039546

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a chronic inflammatory disease characterized by "multiple crosstalk" paths of insulin resistance, lipid metabolism, oxidative stress, etc. The combination of LY294002 and oridonin was proposed as a promising therapy by targeting insulin-PI3K/AKT signaling and NF-κB inflammatory pathway. However, due to oxidative stress, disease-associated upregulation of murine CYP3A11 activity can contribute to unexpected drug metabolism and disposition, which could seriously hinder the efficacy of LY294002 and oridonin. Nanotechnology-based effective reactive oxygen species (ROS) scavengers have emerged as a promising strategy to overcome these limitations. In this study, a rationally designed ROS-responsive liposome loaded with oridonin and LY294002 (RLLs) was developed for effective liver deposition and metabolic regulation for NAFLD treatment. First, we ascertained that the insulin resistance-induced signaling response was balanced by the combination of LY294002 and oridonin. Then, the particle size, zeta potential, ROS-responsive release behavior, and ROS-scavenging properties were investigated. Moreover, the CCl4-exposed mouse model was used to assess the biodistribution and therapeutic efficacy of RLLs on NAFLD. Finally, the "multiple crosstalk" modulation of RLLs was explored by western blotting, enzyme-linked immunosorbent assay, and polymerase chain reaction analysis. RLLs exhibited antioxidant efficacy for the safe delivery of LY294002 and oridonin with good stability and biocompatibility. The biodistribution analysis proved that the accumulation of RLLs was significantly increased due to CD44-mediated targeting. In addition, RLLs had comprehensive protective effects on the CCl4-exposed mouse model, leading to significant elimination of excessive ROS, maintenance of insulin sensitivity and CYP450 activity, and reduction of inflammatory response. In the CCl4-induced mice, RLL intervention remarkably improved metabolic profiles and reduced the fibrosis lesions. Our results provided a strategy for the amelioration of oxidative stress and CYP450 activity using ROS-responsive thioketal as an antioxidant adjuvant facilitated by nanotechnology.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Nanomedicina , Fosfatidilinositol 3-Quinasas/metabolismo , Distribución Tisular , Hígado/metabolismo , Estrés Oxidativo , Insulina/metabolismo
6.
Biomater Sci ; 11(9): 3321-3334, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36946490

RESUMEN

Ferroptosis has been proposed as one form of iron-dependent cell death, overgeneration of high-toxicity hydroxyl radicals (˙OH) tumor sites via Fenton reactions induced cell membrane damage. However, the insufficient intracellular concentrations of both iron and H2O2 limited the anticancer performance of ferroptosis. In this study, ROS-sensitive prodrug nanoassemblies composed of a PEG2000-ferrous compound and a single thioether bond bridged dihydroartemisinin-paclitaxel prodrug were constructed, which fully tapped ex/endogenous iron, ferroptosis inducers, and chemotherapeutic agents. Following cellular uptake, the intracellular oxidizing environment accelerated the self-destruction of nanoassemblies and triggered drug release. In addition to the chemotherapeutic effect, the activated dihydroartemisinin was capable of acting as a toxic ˙OH amplifier via the reinforced Fenton reaction, simultaneously depleting intracellular GSH, as well as inducing glutathione peroxidase 4 inactivation, further enhancing ferroptosis-dependent cancer cell proliferation inhibition. Meanwhile, the ROS generation-inductive and cell cycle arrest effect from the paclitaxel augmented synergetic ferroptotic-chemotherapy of cancer. Thus, the prodrug integrating dihydroartemisinin with paclitaxel via a single thioether bond represents a potent nanoplatform to exert amplified ferroptotic-chemotherapy for improved anticancer efficacy.


Asunto(s)
Neoplasias , Profármacos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Profármacos/farmacología , Profármacos/química , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Sulfuros , Peróxido de Hidrógeno/metabolismo , Hierro
7.
Int J Nanomedicine ; 18: 899-915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824414

RESUMEN

Purpose: Oxidative stress, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and adenosine signaling are factors associated with psoriatic inflammation. Topical delivery of methotrexate (MTX) has become an option to overcome the side effects caused by systemic therapy in psoriasis, leading to the suppression of NF-κB activation through boosting adenosine release. However, thickened psoriatic skin is the primary restriction against local drug delivery. Methods: In this study, a ROS responsive MTX prodrug (MTX-TK-HA) was synthesized with the feature of CD44 mediated active targeting to hyperproliferative keratinocytes. MTX prodrug and PLA-mPEG were formulated by nano-precipitation method to develop the MTX-TK-HA/PLA-mPEG nanoassemblies. To achieve painless transdermal delivery, a dissolving microneedle was applied for direct loading of these nanoassemblies by micromolding technique. The particle size, zeta potential, ROS-responsiveness, permeability, and mechanical strength of nanoassemblies and microneedle arrays were determined, respectively. Then, MTT assay, immunoblot analysis, ELISA assay, flow cytometry, and histological staining were utilized to thoroughly evaluate the efficacy of nanoassemblies-loaded microneedles in an imiquimod-induced psoriatic mouse model. Results: Nanoassemblies-loaded microneedle arrays were capable of significantly penetrating imiquimod-induced psoriatic epidermis in mice. The efficient topical delivery of these nanoassemblies was achieved by potent mechanical strength and hyaluronic acid as the dissolvable matrix for microneedle arrays. CD44-mediated endocytosis enabled the intracellular uptake of nanoassemblies in keratinocytes, and methotrexate was released from MTX-TK-HA with ROS stimuli, followed by suppressing the proliferation of epidermal cells via NF-κB pathway blockade. Conclusion: In a psoriatic mouse model, nanoassemblies loaded microneedle arrays relieve inflammatory skin disorders via regulation of adenosine and NF-κB signaling. Our study offered a rational design for the transdermal delivery of hydrophobic agents and defined an effective therapeutic option for psoriasis treatment.


Asunto(s)
Profármacos , Psoriasis , Ratones , Animales , Metotrexato/química , Profármacos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Imiquimod/uso terapéutico , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Piel , Poliésteres
8.
Biomaterials ; 295: 122049, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36827892

RESUMEN

Alcohol-associated liver disease (ALD) and its complications are significant health problems worldwide. Several pathways in ALD are influenced by alcohol that drives inflammation, fatty acid metabolism, and fibrosis. Although miR-96 has become a key regulator in several liver diseases, its function in ALD remains unclear. In contrast, sonic hedgehog (SHH) signaling has a well-defined role in liver disease through influencing the activation of hepatic stellate cells (HSCs) and the inducement of liver fibrosis. In this study, we investigated the expression patterns of miR-96 and Hh molecules in mouse and human liver samples. We showed that miR-96 and Shh were upregulated in ethanol-fed mice. Furthermore, alcoholic hepatitis (AH) patient specimens also showed upregulated FOXO3a, TGF-ß1, SHH, and GLI2 proteins. We then examined the effects of Hh inhibitor MDB5 and anti-miR-96 on inflammatory and extracellular matrix (ECM)-related genes. We identified FOXO3 and SMAD7 as direct target genes of miR-96. Inhibition of miR-96 decreased the expression of these genes in vitro in AML12 cells, HSC-T6 cells, and in vivo in ALD mice. Furthermore, MDB5 decreased HSCs activation and the expression of ECM-related genes, such as Gli1, Tgf-ß1, and collagen. Lipid nanoparticles (LNPs) loaded with the combination of MDB5, and anti-miR-96 ameliorated ALD in mice. Our study demonstrated that this combination therapy could serve as a new therapeutic target for ALD.


Asunto(s)
MicroARNs , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Ratones , Antagomirs/farmacología , Etanol/efectos adversos , Proteínas Hedgehog/metabolismo , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
9.
Nanomedicine ; 48: 102634, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36462759

RESUMEN

The interplay of liposome-protein corona hinders the clinical application of liposomes due to active macrophage sequestration and rapid plasma clearance. Here we showed that, CXCL10 as a therapeutic protein was coronated the thermosensitive liposomes to form stealth-like nanocarriers (CXCL10/TSLs). Decoration of the corona layer of CXCL10/TSLs by hyaluronic acid conjugated oridonin (ORD/CXCL10/TSLs), overcame the "fluid barrier" built by biological proteins, drastically reduced capture by leukocytes in whole blood, allowed the specific targeting of tumor sites. Multifunctional medicine ORD/CXCL10/TSLs with hyperthermia drove the sustained cytokine-CXCL10 inflammatory loop to switch macrophage phenotype to M1-like, expand tumor-infiltrating natural killer cells and induce intratumoral levels of interferon-γ. Oridonin synergized with CXCL10 during ORD/CXCL10/TSLs treatment, downregulated PI3K/AKT and Raf/MEK signaling for M1-like polarization and migration inhibition. Furthermore, ORD/CXCL10/TSLs potently synergized with anti-PD-L1 antibody in mice bearing metastatic melanoma, induced sustained immunological memory and controlled metastatic spread.


Asunto(s)
Diterpenos de Tipo Kaurano , Melanoma , Ratones , Animales , Liposomas/metabolismo , Fosfatidilinositol 3-Quinasas , Melanoma/tratamiento farmacológico
10.
Pharmaceutics ; 13(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34959271

RESUMEN

The co-delivery of chemotherapeutic agents and immune modulators to their targets remains to be a great challenge for nanocarriers. Here, we developed a hybrid thermosensitive nanoparticle (TMNP) which could co-deliver paclitaxel-loaded transferrin (PTX@TF) and marimastat-loaded thermosensitive liposomes (MMST/LTSLs) for the dual targeting of cancer cells and the microenvironment. TMNPs could rapidly release the two payloads triggered by the hyperthermia treatment at the site of tumor. The released PTX@TF entered cancer cells via transferrin-receptor-mediated endocytosis and inhibited the survival of tumor cells. MMST was intelligently employed as an immunomodulator to improve immunotherapy by inhibiting matrix metalloproteinases to reduce chemokine degradation and recruit T cells. The TMNPs promoted the tumor infiltration of CD3+ T cells by 2-fold, including memory/effector CD8+ T cells (4.2-fold) and CD4+ (1.7-fold), but not regulatory T cells. Our in vivo anti-tumor experiment suggested that TMNPs possessed the highest tumor growth inhibitory rate (80.86%) compared with the control group. We demonstrated that the nanoplatform could effectively inhibit the growth of tumors and enhance T cell recruitment through the co-delivery of paclitaxel and marimastat, which could be a promising strategy for the combination of chemotherapy and immunotherapy for cancer treatment.

11.
Biomater Sci ; 9(24): 8259-8269, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34761752

RESUMEN

Hepatic fibrosis remains a serious threat to human health globally and there are no effective antifibrotic pharmacotherapeutic strategies, to date. Upon the activation of hepatic stellate cells, excess deposition of the extracellular matrix occurs, acting as a trigger that generates reactive oxygen species and an inflammatory response, thereby exacerbating the development of hepatic fibrosis and inflammation. In this study, we incorporated an idea that targets key pathways for developing novel anti-fibrosis nanomedicine. Previous studies have reported the potential of LY294002 (LY) as a PI3K/Akt inhibitor that suppresses the HSC activation and fibrosis development; however, its poor water solubility impedes further investigation. Moreover, the proliferation of HSC, severe oxidative stress and inflammatory conditions could be undermined by oridonin (ORD) treatment. Herein, we developed an HA-ORD/LY-Lips nanocomplex, where LY294002 was encapsulated into liposomes to prepare LY-Lips while ORD was conjugated with a hyaluronic acid (HA) polymer acting as a prodrug HA-ORD. The complex exerts great potential in improving the liver-targeted drug release. We adopted a series of in vitro and in vivo evaluations which demonstrate that HA-ORD/LY-Lips can significantly avert activation of hepatic stellate cells via scavenging reactive oxygen species and suppressing an inflammatory response. Our work implements a proof of concept strategy for fibrosis treatment based on the dual antioxidative and anti-inflammatory mechanisms, which may be applicable to treat liver fibrosis associated with a dysregulated inflammatory microenvironment.


Asunto(s)
Ácido Hialurónico , Fosfatidilinositol 3-Quinasas , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo
12.
Adv Drug Deliv Rev ; 176: 113888, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34314787

RESUMEN

Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Cirrosis Hepática/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
13.
Sci Adv ; 6(46)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177098

RESUMEN

Desmoplastic and hypoxic pancreatic cancer microenvironment induces aberrant expression of miRNAs and hypoxia-inducible factor-1α (HIF-1α) responsible for gemcitabine (GEM) resistance. We demonstrated that miR-519c was down-regulated in pancreatic cancer and transfection of miR-519c in GEM-resistant pancreatic cancer cells inhibited HIF-1α level under hypoxia. We synthesized redox-sensitive mPEG-co-P(Asp)-g-DC-g-S-S-GEM polymer, with GEM payload of 14% (w/w) and 90% GEM release upon incubation with l-glutathione. We synthesized mPEG-co-P(Asp)-g-TEPA-g-DC for complex formation with miRNA. Chemical modification of miR-519c with 2'-O-methyl phosphorothioate (OMe-PS) at 3' end enhanced its stability and activity without being immunogenic. Epidermal growth factor receptor targeting peptide GE11 decoration increased tumor accumulation of micelles after systemic administration and significantly inhibited orthotopic desmoplastic pancreatic cancer growth in NSG mice by down-regulating HIF-1α and genes responsible for glucose uptake and cancer cell metabolism. Our multifunctional nanomedicine of GEM and OMe-PS-miR-519c offers a novel therapeutic strategy to treat desmoplasia and hypoxia-induced chemoresistance in pancreatic cancer.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Hipoxia/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Oxidación-Reducción , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Gemcitabina , Neoplasias Pancreáticas
14.
ACS Appl Mater Interfaces ; 11(16): 14647-14659, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30933478

RESUMEN

Ineffective drug delivery and poor prognosis are two major challenges in the treatment of pancreatic ductal adenocarcinoma (PDAC). While there is significant downregulation of tumor suppressor microRNA-34a (miR-34a), which targets many oncogenes related to proliferation, apoptosis, and invasion, high expression level of Polo-like kinase 1 (PLK1) is closely associated with short survival rates of pancreatic cancer patients. Therefore, the objective is to codeliver miR-34a mimic and small molecule PLK1 inhibitor volasertib (BI6727) using poly(ethylene glycol)-poly[aspartamidoethyl( p-boronobenzyl)diethylammonium bromide] (PEG-B-PAEBEA). This polymer could self-assemble into micelles of ∼100 nm with 10% drug loading of volasertib and form a complex with miR-34a at the N/P ratio of 18 and higher. Combination treatment of volasertib and miR-34a displayed the synergistic effect and superior antiproliferative activity along with an enhanced G2/M phase arrest and suppression of colony formation, leading to cell death due to potential c-myc targeting therapeutics. Orthotopic pancreatic tumor bearing NSG mice were scanned for fluorescence by IVIS after systemic administration of micelles encapsulating volasertib and miR-34a at doses of 5 and 1 mg/kg, respectively. Cy5.5 concentration in plasma and major organs was determined by measuring fluorescence intensity. There was significant reduction in tumor volume, and histological examination of major organs suggested negligible systemic toxicity. In conclusion, PEG-B-PAEBEA micelles carrying volasertib and miR-34a mimic have the potential to treat pancreatic cancer.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Micelas , MicroARNs/farmacología , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pteridinas , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pteridinas/química , Pteridinas/farmacología , Quinasa Tipo Polo 1
15.
Nanomicro Lett ; 11(1): 82, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34138035

RESUMEN

Autophagy is closely related to the drug resistance and metastasis in cancer therapy. Nanoparticle-mediated co-delivery of combinatorial therapy with small-molecular drugs and nucleic acids is promising to address drug resistance. Here, a drug-delivering-drug (DDD) platform consisting of anti-tumor-drug nanorods as a vehicle for cytosol delivery of nucleic acid (miR-101) with potent autophagic-inhibition activity is reported for combinatorial therapy. The developed 180-nm nanoplatform, with total drug loading of up to 66%, delivers miR-101 to cancer cells, with threefold increase in intracellular level compared to conventional gene carriers and inhibits the autophagy significantly, along with above twofold reduction in LC3II mRNA and approximately fivefold increase in p62 mRNA over the control demonstrated in the results in vivo. And in turn, the delivery of miR-101 potentiates the drug's ability to kill cancer cells, with a threefold increase in apoptosis over that of chemotherapy alone. The anti-tumor study in vivo indicates the combined therapy that enables a reduction of 80% in tumor volume and > twofold increase in apoptosis than of the single-drug strategy. In summary, via the carrier-free strategy of DDD, this work provides a delivery platform that can be easily customized to overcome drug resistance and facilitates the delivery of combined therapy of small-molecular drugs and nucleic acids.

16.
Pharmaceutics ; 10(3)2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011808

RESUMEN

Amorphous nanosuspensions (ANSs) enable rapid release and improved delivery of a poorly water-soluble drug; however, their preparation is challenging. Here, using hemoglobin (Hb) as a carrier, ANSs aggregated from paclitaxel (PTX)⁻Hb complexes were prepared to improve delivery of the hydrophobic anti-cancer agent. An affinity study demonstrated strong interaction between Hb and PTX. Importantly, the complexes could aggregate into <300 nm ANSs with high drug loading, which acidic condition facilitated their formation. Furthermore, the ANSs possessed improved cytotoxicity against cancer cells over the crystalline nanosuspensions. Taken together, ANSs aggregated from PTX⁻Hb complexes were developed, which could kill cancer cells with high efficiency.

17.
Theranostics ; 8(13): 3474-3489, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026860

RESUMEN

Protein therapeutics is playing an increasingly critical role in treatment of human diseases. However, current vectors are captured by the digestive endo-lysosomal system, which results in an extremely low fraction (<2%) of protein being released in the cytoplasm. This paper reports a drug-delivering-drug platform (HA-PNPplex, 200 nm) for potent intracellular delivery of protein and combined treatment of cancer. Methods: The platform was prepared by loading functional protein on pure drug nanoparticles (PNPs) followed by hyaluronic acid coating and was characterized by dynamic light scattering, transmission electron microscopy, and gel electrophoresis. In vitro, cellular uptake, trafficking, and cytotoxicity were evaluated by flow cytometry and confocal laser microscopy. Protein expression was assayed by western blot. In vivo, blood circulation and biodistribution were studied using a fluorescence imaging system, antitumor efficacy was assessed in a caspase 3-deficient tumor model, and biocompatibility was determined by comparison of hemolytic activity and proinflammatory cytokines and tissue histology. Results: HA-PNPplex delivered the functional protein, caspase 3, to cells via bypassing endo-lysosomes and raised the caspase-3 level 6.5-fold in caspase 3-deficient cells. Promoted tumor accumulation (1.5-fold) and penetration were exhibited, demonstrating a high tumor-targeting ability of HA-PNPplex. HA-PNPplex rendered a 7-fold increase in caspase 3 in tumor and allowed for a 100% tumor growth inhibition and >60% apoptosis, implying significant antitumor activities. Conclusions: This platform gains cellular entry without entrapment in the endo-lysosomes and enables efficient intracellular protein delivery and resultant profound cancer treatment. This platform, with extremely high drug-loading, is a valuable platform for combined cancer therapy with small-molecule drugs and proteins. More importantly, this work offers a robust and safe approach for protein therapeutics and intracellular delivery of other functional peptides, as well as gene-based therapy.


Asunto(s)
Antineoplásicos/farmacocinética , Productos Biológicos/farmacocinética , Neoplasias de la Mama/tratamiento farmacológico , Caspasa 3/farmacocinética , Sistemas de Liberación de Medicamentos , Nanopartículas/metabolismo , Animales , Antineoplásicos/administración & dosificación , Disponibilidad Biológica , Productos Biológicos/administración & dosificación , Western Blotting , Caspasa 3/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Ratones Endogámicos BALB C , Microscopía Confocal , Modelos Biológicos , Imagen Óptica , Ratas , Resultado del Tratamiento
18.
ACS Nano ; 12(2): 1519-1536, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29350904

RESUMEN

The tumor microenvironment (TME) plays a critical role in tumor initiation, progression, invasion, and metastasis. Therefore, a therapy that combines chemotherapeutic drugs with a TME modulator could be a promising route for cancer treatment. This paper reports a nanoplatform self-assembled from a hyaluronic acid (HA)-paclitaxel (PTX) (HA-PTX) prodrug and marimastat (MATT)-loaded thermosensitive liposomes (LTSLs) (MATT-LTSLs) for the dual targeting of the TME and cancer cells. Interestingly, the prodrug HA-PTX can self-assemble on both positively and negatively charged liposomes, forming hybrid nanoparticles (HNPs, 100 nm). Triggered by mild hyperthermia, HA-PTX/MATT-LTSLs HNPs rapidly release their payloads into the extracellular environment, and the released HA-PTX quickly enters 4T1 cells through a CD44-HA affinity. The HNPs possess promoted tumor accumulation (1.6-fold), exhibit deep tumor penetration, and significantly inhibit the tumor growth (10-fold), metastasis (100%), and angiogenesis (10-fold). Importantly, by targeting the TME and maintaining its integrity via inhibiting the expression and activity of matrix metalloproteinases (>5-fold), blocking the fibroblast activation by downregulating the TGF-ß1 expression (5-fold) and suppressing the degradation of extracellular matrix, the HNPs allow for significant metastasis inhibition. Overall, these findings indicate that a prodrug of an HA-hydrophobic-active compound and liposomes can be self-assembled into a smart nanoplatform for the dual targeting of the TME and tumor cells and efficient combined treatment; additionally, the co-delivery of MATT and HA-PTX with the HNPs is a promising approach for the treatment of metastatic cancer. This study creates opportunities for fabricating multifunctional nanodevices and offers an efficient strategy for disease therapy.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/administración & dosificación , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/administración & dosificación , Ácidos Hidroxámicos/administración & dosificación , Paclitaxel/administración & dosificación , Profármacos/administración & dosificación , Animales , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Humanos , Ácido Hialurónico/farmacocinética , Ácido Hialurónico/farmacología , Ácidos Hidroxámicos/farmacocinética , Ácidos Hidroxámicos/farmacología , Liposomas/química , Células MCF-7 , Ratones Endogámicos BALB C , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Profármacos/farmacocinética , Profármacos/farmacología , Microambiente Tumoral/efectos de los fármacos
19.
Adv Sci (Weinh) ; 4(11): 1700324, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29201626

RESUMEN

Efficient microRNAs (miRNA) delivery into cells is a promising strategy for disease therapy, but is a major challenge because the available conventional nonviral vectors have significant drawbacks. In particular, after these vectors are entrapped in lysosomes, the escape efficiency of genes from lysosomes into the cytosol is less than 2%. Here, a novel approach for lethal-7a (let-7a) replacement therapy using rod-shaped active pure drug nanoparticles (≈130 nm in length, PNPs) with a dramatically high drug-loading of ≈300% as vectors is reported. Importantly, unlike other vectors, the developed PNPs/let-7a complexes (≈178 nm, CNPs) can enter cells and bypass the lysosomal route to localize to the cytosol, achieving efficient intracellular delivery of let-7a and a 50% reduction in expression of the target protein (KRAS). Also, CNPs prolong the t1/2 of blood circulation by ≈threefold and increase tumor accumulation by ≈1.5-2-fold, resulting in significantly improved antitumor efficacies. Additionally, no damage to normal organs is observed following systemic injection of CNPs. In conclusion, rod-shaped active PNPs enable efficient and safe delivery of miRNA with synergistic treatment for disease. This nanoplatform would also offer a viable strategy for the potent delivery of proteins and peptides in vitro and in vivo.

20.
Sci Rep ; 7: 46186, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383524

RESUMEN

Co-delivery of microRNAs and chemotherapeutic drugs into tumor cells is an attractive strategy for synergetic breast cancer therapy due to their complementary mechanisms. In this work, a core-shell nanocarrier coated by cationic albumin was developed to simultaneously deliver miRNA-34a and docetaxel (DTX) into breast cancer cells for improved therapeutic effect. The co-delivery nanocarriers showed a spherical morphology with an average particle size of 183.9 nm, and they efficiently protected miRNA-34a from degradation by RNase and serum. Importantly, the nanocarriers entered the cytosol via a caveolae-mediated pathway without entrapment in endosomes/lysosomes, thus improving the utilization of the cargo. In vitro, the co-delivery nanocarriers suppressed the expression of anti-apoptosis gene Bcl-2 at both transcription and protein levels, inhibited tumor cell migration and efficiently induced cell apoptosis and cytotoxicity. In vivo, the co-delivery nanocarriers prolonged the blood circulation of DTX, enhanced tumor accumulation of the cargo and significantly inhibited tumor growth and metastasis in 4T1-tumor bearing mice models. Taken together, the present nanocarrier co-loading with DTX and miRNA-34a is a new nanoplatform for the combination of insoluble drugs and gene/protein drugs and provides a promising strategy for the treatment of metastatic breast cancer.


Asunto(s)
Caveolas/química , Citosol/metabolismo , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , MicroARNs/administración & dosificación , Nanopartículas/química , Taxoides/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Docetaxel , Endocitosis , Humanos , Neoplasias Mamarias Experimentales/patología , Ratones , MicroARNs/sangre , Nanopartículas/ultraestructura , Metástasis de la Neoplasia , Interferencia de ARN , Estabilidad del ARN , Ratas , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Taxoides/administración & dosificación , Taxoides/farmacocinética , Distribución Tisular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...