Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Sci Total Environ ; 953: 176130, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39260508

RESUMEN

Plastics aging reduces resistance to microbial degradation. Plastivore Tenebrio molitor rapidly biodegrades polystyrene (PS, size: < 80 µm), but the effects of aging on PS biodegradation by T. molitor remain uncharacterized. This study examined PS biodegradation over 24 days following three pre-treatments: freezing with UV exposure (PS1), UV exposure (PS2), and freezing (PS3), compared to pristine PS (PSv) microplastic. The pretreatments deteriorated PS polymers, resulting in slightly higher specific PS consumption (602.8, 586.1, 566.7, and 563.9 mg PS·100 larvae-1·d-1, respectively) and mass reduction rates (49.6 %, 49.5 %, 49.2 %, and 48.7 %, respectively) in PS1, PS2, and PS3 compared to PSv. Improved biodegradation correlated with reduced molecular weights and the formation of oxidized functional groups. Larvae fed more aged PS exhibited greater gut microbial diversity, with microbial community and metabolic pathways shaped by PS aging, as supported by co-occurrence network analysis. These findings indicated that the aging treatments enhanced PS biodegradation by only limited extent but impacted greater on gut microbiome and bacterial metabolic genes, indicating that the T. molitor host have highly predominant capability to digest PS plastics and alters gut microbiome to adapt the PS polymers fed to them.


Asunto(s)
Biodegradación Ambiental , Microbioma Gastrointestinal , Larva , Poliestirenos , Tenebrio , Animales , Tenebrio/metabolismo , Microbioma Gastrointestinal/fisiología , Larva/metabolismo , Bacterias/metabolismo , Plásticos/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
Inorg Chem ; 63(39): 18200-18210, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39302043

RESUMEN

In situ ligand transformation strategies represent an efficient pathway for constructing function-oriented polyoxometalate (POM)-based crystalline materials. Herein, three POM-based hybrid networks were synthesized through in situ transformation of the phosphine ligand, formulated as [Ag(dppeo)6][H2PMo12O40]·5H2O (1), [Ag(dedpo)]4[SiW12O40]·6H2O (2), and [Ag(dppeo)]3[PW12O40]·3H2O (3) (dedpo = (2-(diphenylphosphaneyl)ethyl)diphenylphosphine oxide; dppeo = ethane-1,2-diylbis(diphenylphosphine oxide)). During the synthesis of these compounds, the 1,2-diphenylphosphine ethane molecule underwent in situ oxidation, transforming into dppeo and dedpo ligands, respectively. Compound 1 features a supramolecular architecture assembled from [Ag(dppeo)3]+/[Ag2(dppeo)6]2+ cationic clusters with disordered Ag centers and protonated [H2PMo12O40]- anions. Compound 2 presents a 3-D POM-supported metal-organic framework consisting of binuclear [Ag(dedpo)]22+ units, {-dedpo-Ag-dedpo-} chains, and [SiW12O40]4- polyoxoanions. Compound 3 displays a 2-D layered structure formed by {-dppeo-Ag3-dppeo-} chains and [PW12O40]3- clusters. Pronounced argentophilic interactions are observed in compounds 1 and 3. The three compounds demonstrate satisfactory heterogeneous catalytic activity in the colorimetric detection reactions toward phenol pollutants with detection limits of 1.73, 1.92, and 4.6 µM, respectively. Additionally, compounds 1-3 show high anti-interference capabilities and high sensitivity in differentiating phenol from its halogenated derivatives. This work presents some guidance for designing specific function-oriented POM-based materials via an in situ ligand transformation strategy.

3.
Front Aging Neurosci ; 16: 1412735, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328245

RESUMEN

Background: The relationship between white matter hyperintensities (WMH) and the core features of Alzheimer's disease (AD) remains controversial. Further, due to the prevalence of co-pathologies, the precise role of WMH in cognition and neurodegeneration also remains uncertain. Methods: Herein, we analyzed 1803 participants with available WMH volume data, extracted from the ADNI database, including 756 cognitively normal controls, 783 patients with mild cognitive impairment (MCI), and 264 patients with dementia. Participants were grouped according to cerebrospinal fluid (CSF) pathology (A/T profile) severity. Linear regression analysis was applied to evaluate the factors associated with WMH volume. Modeled by linear mixed-effects, the increase rates (Δ) of the WMH volume, cognition, and typical neurodegenerative markers were assessed. The predictive effectiveness of WMH volume was subsequently tested using Cox regression analysis, and the relationship between WMH/ΔWMH and other indicators such as cognition was explored through linear regression analyses. Furthermore, we explored the interrelationship among amyloid-ß deposition, cognition, and WMH using mediation analysis. Results: Higher WMH volume was associated with older age, lower CSF amyloid-ß levels, hypertension, and smoking history (all p ≤ 0.001), as well as cognitive status (MCI, p < 0.001; dementia, p = 0.008), but not with CSF tau levels. These results were further verified in any clinical stage, except hypertension and smoking history in the dementia stage. Although WMH could not predict dementia conversion, its increased levels at baseline were associated with a worse cognitive performance and a more rapid memory decline. Longitudinal analyses showed that baseline dementia and positive amyloid-ß status were associated with a greater accrual of WMH volume, and a higher ΔWMH was also correlated with a faster cognitive decline. In contrast, except entorhinal cortex thickness, the WMH volume was not found to be associated with any other neurodegenerative markers. To a lesser extent, WMH mediates the relationship between amyloid-ß and cognition. Conclusion: WMH are non-specific lesions that are associated with amyloid-ß deposition, cognitive status, and a variety of vascular risk factors. Despite evidence indicating only a weak relationship with neurodegeneration, early intervention to reduce WMH lesions remains a high priority for preserving cognitive function in the elderly.

4.
Mar Pollut Bull ; 208: 117022, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39332333

RESUMEN

Microplastics (MPs) are widespread ocean pollutants and many studies have explored their effects. However, research on MPs combined impact with copper (Cu) on dimethylated sulfur compound production is limited. Dimethyl sulfide (DMS) is an important biogenic sulfur compound related to global temperatures. This study examined the ecotoxicological effects of polyamide 6 MPs and Cu on dimethylsulfoniopropionate (DMSP), DMS, and dimethyl sulfoxide (DMSO) production in Manila clams (Ruditapes philippinarum). Our findings showed that MPs and Cu increased oxidative stress, indicated by higher superoxide anion radical production and malondialdehyde levels while decreasing glutathione contents and increasing superoxide dismutase activities. Additionally, MPs and Cu exposure reduced DMS and dissolved DMSO (DMSOd) concentrations due to decreased grazing. These results contribute to a better understanding of the ecotoxicological effects of MPs/Cu on bivalves and their roles in the organic sulfur cycle, suggesting a need for further research on long-term impacts on them.

5.
CNS Neurosci Ther ; 30(9): e70051, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39294845

RESUMEN

AIMS: The early stages of Alzheimer's disease (AD) are no longer insurmountable. Therefore, identifying at-risk individuals is of great importance for precise treatment. We developed a model to predict cognitive deterioration in patients with mild cognitive impairment (MCI). METHODS: Based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we constructed models in a derivation cohort of 761 participants with MCI (138 of whom developed dementia at the 36th month) and verified them in a validation cohort of 353 cognitively normal controls (54 developed MCI and 19 developed dementia at the 36th month). In addition, 1303 participants with available AD cerebrospinal fluid core biomarkers were selected to clarify the ability of the model to predict AD core features. We assessed 32 parameters as candidate predictors, including clinical information, blood biomarkers, and structural imaging features, and used multivariable logistic regression analysis to develop our prediction model. RESULTS: Six independent variables of MCI deterioration were identified: apolipoprotein E ε4 allele status, lower Mini-Mental State Examination scores, higher levels of plasma pTau181, smaller volumes of the left hippocampus and right amygdala, and a thinner right inferior temporal cortex. We established an easy-to-use risk heat map and risk score based on these risk factors. The area under the curve (AUC) for both internal and external validations was close to 0.850. Furthermore, the AUC was above 0.800 in identifying participants with high brain amyloid-ß loads. Calibration plots demonstrated good agreement between the predicted probability and actual observations in the internal and external validations. CONCLUSION: We developed and validated an accurate prediction model for dementia conversion in patients with MCI. Simultaneously, the model predicts AD-specific pathological changes. We hope that this model will contribute to more precise clinical treatment and better healthcare resource allocation.


Asunto(s)
Disfunción Cognitiva , Demencia , Progresión de la Enfermedad , Proteínas tau , Humanos , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Masculino , Anciano , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Demencia/sangre , Demencia/diagnóstico por imagen , Anciano de 80 o más Años , Imagen por Resonancia Magnética/métodos , Biomarcadores/sangre , Estudios de Cohortes , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen/métodos
6.
J Orofac Orthop ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179928

RESUMEN

PURPOSE: The purpose of this study was to analyze the biomechanical effects of four different designs of frog appliances for molar distalization using finite element analysis. METHODS: A three-dimensional finite element model including complete dentition, periodontal ligament, palatine, and alveolar bone was established. Four types of frog appliances were designed to simulate maxillary molar distalization: tooth-button-borne (Type A), bone-borne (Type B), bone-button-borne (Type C), and tooth-bone-borne (Type D) frog appliances. A force of 10 N was applied simulating a screw in the anteroposterior direction. To assess the von Mises stress distribution and the resultant displacements in the teeth and periodontal tissues, geometric nonlinear theory was utilized. RESULTS: Compared to the conventional tooth-borne frog appliance (Type A), the bone-borne frog appliances showed increased first molar distalization with enhanced mesiolingual rotation and distal tipping, but the labial inclination and intrusion of the incisors were insignificant. When replacing the palatal acrylic button with miniscrews (Types B and D), more anchorage forces were transmitted from the first premolar to palatine bone, which was further dispersed by the assistance of a palatal acrylic button (Type C). CONCLUSIONS: Compared to tooth-borne frog appliances, the bone-borne variants demonstrated a clear advantage for en masse molar distalization. The combined anchorage system utilizing palatal acrylic buttons and miniscrews (Type C) offers the most efficient stress distribution, minimizing force concentration on the palatine bone.

7.
J Am Chem Soc ; 146(36): 25028-25034, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213504

RESUMEN

Controlling the packing of olefinic molecules in crystals is essential for triggering solid-state [2 + 2] photocycloaddition reactions and the synthesis of photocontrolled smart materials. Herein, we report the stepwise photodimerization-triggered photopolymerization of two triene coordination polymers (CPs), {[Zn(2-BBA)2(tpeb)]·0.5CH3CN}n (1, 2-HBBA = 2-bromobenzoic acid, tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene) and {[Zn(3-BBA)2(tpeb)]·CH3CN)}n (2, 3-HBBA = 3-bromobenzoic acid). Upon irradiation with 420 nm light, each pair of closely packed and parallel olefinic bonds in 1 undergoes a [2 + 2] cycloaddition reaction, which connects two adjacent Z-shaped chains into a ladder-like coordination chain [Zn(2-BBA)2(bpbdpvpcb)0.5]n (1a, bpbdpvpcb = 1,3-bis(4-pyridyl)-2,4-bis(3,5-di(2-(4-pyridyl)vinyl)phenyl]cyclobutene) through single-crystal to single-crystal (SCSC) transformation. After photodimerization from 1 to 1a has occurred, the olefinic bonds that were initially distant are brought in close enough proximity to meet the requirements for a subsequent [2 + 2] cycloaddition reaction. Upon further light irradiation, the neighboring bpbdpvpcb ligands in 1a experience a SCSC photopolymerization based on [2 + 2] photocycloaddition and transform into poly-3b,4,5,5a,8b,9,10a-octahydro-4,5,9,10-tetrapyridyl-2,7-di(2-(4-pyridyl)vinyl)dicyclobuta[e,l]-pyren (poly-otpdpvdcbp). 2 showed similar structural changes under UV light illumination. Under light exposure, single crystals of 1 and 2 with different morphologies exhibit bending, cracking, and jumping photomechanical motions. The composite film (1-PVA) engineered by dispersing crystalline particles of 1 in poly(vinyl alcohol) (PVA) displays interesting light-wavelength-dependent photomechanical motions and can perform photodriven swimming on a liquid surface. This work provides a useful and promising approach to enable photodimerization of those photoinactive olefin pairs embedded in CPs and opens a new route to synthesize organic polymers by using olefinic CP platforms.

8.
Adv Healthc Mater ; : e2402314, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171764

RESUMEN

The confused gene expressions and molecular mechanisms for mitochondrial dysfunction of traditional nanoenzymes is a challenge for tumor therapy. Herein, a nano-bacilliform-enzyme obtains the ability to inhibit p52-ZER6 signal pathway, regulate the genes related to mitochondrial metabolism, and possess the GOx/CAT/POD-like property. NBE acquires catalytic activity from the electronic energy transition. The tannin of NBE as a mitochondrial (Mito)-targeting guide overloads MitoROS, and then metabolic disorder and lipid peroxidation of Mito membrane occurs, thus leading to a novel death pathway called PAFerroptosis (pyroptosis, apoptosis, and Ferroptosis). Simultaneously, in order to refrain from mitophagy, hydroxychloroquine is mixed with NBE to form a combo with strength pyroptosis. As a result, NBE/combo improves the PAFerroptosis obviously by activation of CD8+T cells and inactivation of MDSC cells, up-regulating expression of caspase-3 signal pathway, intercepting DHODH pathway to arrive excellent antitumor effect (93%). Therefore, this study establishes a rational nanoenzyme for mitochondrial dysfunction without mitophagy for effective antitumor therapy.

9.
Environ Pollut ; 360: 124653, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39095002

RESUMEN

Protozoa play a pivotal role in the microbial cycle, and ciliated protozoan grazing habits are associated with dimethyl sulfide (DMS) cycle. Many studies have explored the impacts of nanoplastics (NPs) and microplastics (MPs) on ecotoxicological effects of ciliates. However, limited research exists on NPs and MPs influences on the production of organic sulfur compounds. The impact of NPs and MPs on the production of dimethyl sulfoxide (DMSO) and carbonyl sulfide (COS) remains unclear. Therefore, we examined the impacts of three concentrations (1 × 105, 5 × 105, and 1 × 106 items/mL) of polystyrene (PS) NPs (50 nm) and MPs (1 and 5 µm) on the ecotoxicology and DMS/dimethylsulfoniopropionate (DMSP)/DMSO/COS production in the ciliate Uronema marinum. NPs and MPs exposure were found to reduce the abundance, growth rate, volume, and biomass of U. marinum. Additionally, NPs and MPs increased the superoxide anion radical (O2˙─) production rates and malondialdehyde (MDA) contents (24 h), leading to a decline in glutathione (GSH) content and an ascend in superoxide dismutase (SOD) activity to mitigate the effects of reactive oxygen species (ROS). Exposure to PS NPs and MPs decreased the ingestion rates of algae by 7.5-14.4%, resulting in decreases in DMS production by 56.8-85.4%, with no significant impact on DMSO production. The results suggest a distinct pathway for the production of DMSO or COS compared to DMS. These findings help us to understand the NPs and MPs impacts on the marine ecosystem and organic sulfur compound yield, potentially influencing the global climate.


Asunto(s)
Antioxidantes , Cilióforos , Microplásticos , Cilióforos/fisiología , Antioxidantes/metabolismo , Microplásticos/toxicidad , Contaminantes Químicos del Agua , Nanopartículas/toxicidad , Sulfuros/toxicidad
10.
Environ Pollut ; 360: 124649, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39095004

RESUMEN

Dimethyl sulfide (DMS) is a prevalent volatile organic sulfur compound relevant to the global climate. Ecotoxicological effects of nano- and microplastics (NPs and MPs) on phytoplankton, zooplankton, and bacteria have been investigated by numerous studies. Yet, the influences of NPs/MPs on dimethylated sulfur compounds remains understudied. Herein, we investigated the impacts of polystyrene (PS) NPs/MPs (80 nm, 1 µm, and 10 µm) on zooplankton grazing, chlorophyll a (Chl a) concentration, bacterial community, dimethylsulfoniopropionate (DMSP), and DMS production in the microcosms. Our findings revealed that rotifer grazing increased the production of DMS in the absence of NPs/MPs but did not promote DMS production when exposed to NPs/MPs. The ingestion rates of the rotifer and copepod exposed to NPs/MPs at high concentrations were significantly reduced. NPs/MPs exposure significantly decreased DMS levels in the treatments with rotifers compared to the animal controls. In the bacterial microcosms, smaller NPs/MPs sizes were more detrimental to Chl a concentrations compared to larger sizes. The study revealed a stimulatory effect on Chl a concentrations, DMSPd concentrations, and bacterial abundances when exposed to 10 µm MP with low concentrations. The effects of NPs/MPs on DMS concentrations were both dose- and size-dependent, with NPs showing greater toxicity compared to larger MPs. NPs/MPs led to changes in bacterial community compositions, dependent on both dosage and size. NPs caused a notable decrease in the alpha diversities and richness of bacteria compared to MPs. These results provide insights into the influences of NPs/MPs on food webs, and subsequently organic sulfur compounds cycles.


Asunto(s)
Bacterias , Contaminantes Químicos del Agua , Zooplancton , Animales , Zooplancton/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Microplásticos/toxicidad , Compuestos de Azufre , Sulfuros/toxicidad , Nanopartículas/toxicidad , Clorofila A/metabolismo , Plásticos
11.
J Nanobiotechnology ; 22(1): 464, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095755

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a first-line chemotherapeutic drug for various malignancies that causes cardiotoxicity. Plant-derived exosome-like nanovesicles (P-ELNs) are growing as novel therapeutic agents. Here, we investigated the protective effects in DOX cardiotoxicity of ELNs from Momordica charantia L. (MC-ELNs), a medicinal plant with antioxidant activity. RESULTS: We isolated MC-ELNs using ultracentrifugation and characterized them with canonical mammalian extracellular vesicles features. In vivo studies proved that MC-ELNs ameliorated DOX cardiotoxicity with enhanced cardiac function and myocardial structure. In vitro assays revealed that MC-ELNs promoted cell survival, diminished reactive oxygen species, and protected mitochondrial integrity in DOX-treated H9c2 cells. We found that DOX treatment decreased the protein level of p62 through ubiquitin-dependent degradation pathway in H9c2 and NRVM cells. However, MC-ELNs suppressed DOX-induced p62 ubiquitination degradation, and the recovered p62 bound with Keap1 promoting Nrf2 nuclear translocation and the expressions of downstream gene HO-1. Furthermore, both the knockdown of Nrf2 and the inhibition of p62-Keap1 interaction abrogated the cardioprotective effect of MC-ELNs. CONCLUSIONS: Our findings demonstrated the therapeutic beneficials of MC-ELNs via increasing p62 protein stability, shedding light on preventive approaches for DOX cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Exosomas , Momordica charantia , Factor 2 Relacionado con NF-E2 , Animales , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Momordica charantia/química , Exosomas/metabolismo , Ratas , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Supervivencia Celular/efectos de los fármacos , Ratas Sprague-Dawley , Proteína Sequestosoma-1/metabolismo
12.
Int J Ophthalmol ; 17(8): 1403-1410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156790

RESUMEN

AIM: To investigate the effects of fibrillin-1 (FBN1) deletion on the integrity of retina-blood barrier function and the apoptosis of vascular endothelial cells under diabetic conditions. METHODS: Streptozotocin (STZ)-induced diabetic mice were used to simulate the diabetic conditions of diabetic retinopathy (DR) patients, and FBN1 expression was detected in retinas from STZ-diabetic mice and controls. In the Gene Expression Omnibus (GEO) database, the GSE60436 dataset was selected to analyze FBN1 expressions in fibrovascular membranes from DR patients. Using lentivirus to knock down FBN1 levels, vascular leakage and endothelial barrier integrity were detected by Evans blue vascular permeability assay, fluorescein fundus angiography (FFA) and immunofluorescence labeled with tight junction marker in vivo. High glucose-induced monkey retinal vascular endothelial cells (RF/6A) were used to investigate effects of FBN1 on the cells in vitro. The vascular endothelial barrier integrity and apoptosis were detected by trans-endothelial electrical resistance (TEER) assay and flow cytometry, respectively. RESULTS: FBN1 mRNA expression was increased in retinas of STZ-induced diabetic mice and fibrovascular membranes of DR patients (GSE60436 datasets) using RNA-seq approach. Besides, knocking down of FBN1 by lentivirus intravitreal injection significantly inhibited the vascular leakage compared to STZ-DR group by Evans blue vascular permeability assay and FFA detection. Expressions of tight junction markers in STZ-DR mouse retinas were lower than those in the control group, and knocking down of FBN1 increased the tight junction levels. In vitro, 30 mmol/L glucose could significantly inhibit viability of RF/6A cells, and FBN1 mRNA expression was increased under 30 mmol/L glucose stimulation. Down-regulation of FBN1 reduced high glucose (HG)-stimulated retinal microvascular endothelial cell permeability, increased TEER, and inhibited RF/6A cell apoptosis in vitro. CONCLUSION: The expression level of FBN1 increases in retinas and vascular endothelial cells under diabetic conditions. Down-regulation of FBN1 protects the retina of early diabetic rats from retina-blood barrier damage, reduce vascular leakage, cell apoptosis, and maintain vascular endothelial cell barrier function.

13.
Front Pharmacol ; 15: 1394369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148540

RESUMEN

Objective: Diabetic nephropathy (DN) is a serious complication that may occur during the later stages of diabetes, and can be further exacerbated by podocyte damage. Piperazine ferulate (PF) has well-defined nephroprotective effects and is used clinically in the treatment of chronic nephritis and other kidney diseases. However, the renoprotective effects and mechanisms of PF on DN are not clear. This study aims to investigate the protective effect of PF on DN and its mechanism of action, to inform the clinical application of PF in DN treatment. Methods: Network pharmacology was performed to predict the mechanism of action of PF in DN. Male Sprague Dawley rats were intraperitoneally injected with STZ (60 mg/kg) to establish a DN model, and then assessed for renal injury after 12 weeks of administration. In vitro, rat podocytes were treated with 25 mmol/L glucose and cultured for 24 h, followed by an assessment of cell injury. Results: Our results showed that PF significantly improved renal function, reduced renal pathological changes, decreased inflammatory response, and alleviated podocyte damage in DN rats. PF also attenuated glucose-induced podocyte injury in vitro. Regarding molecular mechanisms, our study demonstrated that PF downregulated the expression of genes and proteins related to AGE-RAGE-mediated inflammatory signaling. Conclusion: In summary, PF exerts its renoprotective effects by decreasing inflammation and protecting against podocyte injury through the inhibition of the AGE/RAGE/NF-κB/NLRP3 pathway. Overall, these data support the clinical potential of PF as a renoprotective agent in DN.

14.
Shanghai Kou Qiang Yi Xue ; 33(3): 229-234, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39104334

RESUMEN

PURPOSE: To investigate the inhibitory effect of sodium cantharidate (SCA) on human tongue squamous cell carcinoma CAL27 cells and its mechanism. METHODS: CAL27 cells were pretreated with different concentrations of SCA. Cell viability was analyzed by CCK-8 method. The migration and invasion of CAL27 cells were measured by scratch test and Transwell chamber, and the apoptosis rate was measured by flow cytometry. p53 protein and its phosphorylation sites Ser33, Ser37, Ser46, expression of BCL-2, BAX, and cleaved caspase 3 in CAL27 cells were detected by Western blot. Statistical analysis was performed with Graphpad Prism 9.0 software package. RESULTS: Compared with the blank control group, the proliferation, migration and invasion of CAL27 cells in sodium cantharidate group were significantly decreased, and the apoptosis rate was significantly increased(P<0.01) in a dose-dependent manner. The expression of p53 protein and its phosphorylation sites Ser33, Ser37, Ser46 protein was significantly up-regulated(P<0.05 or P<0.01). The expression of BCL-2 protein was down-regulated and the expression of BAX protein was significantly up-regulated(P<0.05 or P<0.01). The ratio of BCL-2/BAX was significantly decreased and the expression of cleaved caspase 3 protein was significantly up-regulated(P<0.05 or P<0.01). CONCLUSIONS: SCA can inhibit the proliferation, migration and invasion of human tongue squamous cell carcinoma CAL27 cells. It also down-regulates the ratio of BCL-2/BAX and up-regulates the expression of cleaved caspase 3 protein by regulating the phosphorylation of p53 protein, which induces apoptosis.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Movimiento Celular , Proliferación Celular , Neoplasias de la Lengua , Proteína p53 Supresora de Tumor , Proteína X Asociada a bcl-2 , Humanos , Neoplasias de la Lengua/tratamiento farmacológico , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fosforilación/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Invasividad Neoplásica
15.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117859

RESUMEN

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Asunto(s)
Trastorno Depresivo Mayor , Transcriptoma , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Femenino , Masculino , Adulto , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Persona de Mediana Edad , Imagen por Resonancia Magnética , Perfilación de la Expresión Génica
16.
J Diabetes Res ; 2024: 5661751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988702

RESUMEN

Purpose: Type 2 diabetes mellitus (T2DM) is associated with multiple neuropsychiatric impairments, including cognitive dysfunction, and melatonin (MLT) plays a crucial role in maintaining normal neuropsychiatric functions. This study is aimed at investigating the change in plasma MLT levels and its association with neuropsychiatric impairments in T2DM patients. Methods: One hundred twenty-six T2DM patients were recruited, and their demographics and clinical data were collected. Apart from the plasma glycated hemoglobin (HbA1c) levels and other routine metabolic indicators, the plasma concentrations of MLT, C-reactive protein (CRP), Interleukin 6 (IL-6), soluble myeloid triggered receptor 1 (sTREM 1), and receptor 2 (sTREM 2) were measured. Moreover, the executive function and depressive tendency were evaluated via the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) and the Epidemiological Research Center Depression Scale (CES-D), respectively. Result: Compared with the low HbA1c group, the T2DM patients in the high HbA1c group presented lower plasma MLT levels but higher plasma concentrations of inflammatory biomarker levels, together with higher scores in the BRIEF-A and CES-D scales. Moreover, results of the Pearson correlation test showed that the plasma MLT levels were negatively correlated with the BRIEF-A and CES-D scores, as well as plasma concentrations of HbA1c and inflammatory indications, indicating that MLT may mediate their neuroinflammation and neuropsychiatric impairments. Furthermore, the ROC curve results indicated that plasma MLT levels have a predictive effect on executive impairment and depressive status in T2DM patients. Conclusion: MLT levels decreased in patients with T2DM and were associated with neuropsychiatric impairments and inflammatory status, and MLT might be developed as a therapeutic agent and predictive indicator for T2DM-associated executive impairment and depression status.


Asunto(s)
Biomarcadores , Disfunción Cognitiva , Depresión , Diabetes Mellitus Tipo 2 , Hemoglobina Glucada , Melatonina , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/psicología , Diabetes Mellitus Tipo 2/complicaciones , Melatonina/sangre , Masculino , Femenino , Persona de Mediana Edad , Hemoglobina Glucada/metabolismo , Hemoglobina Glucada/análisis , Disfunción Cognitiva/sangre , Disfunción Cognitiva/psicología , Depresión/sangre , Biomarcadores/sangre , Anciano , Adulto , Función Ejecutiva , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis
17.
Medicine (Baltimore) ; 103(29): e38861, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029026

RESUMEN

Osteoporosis (OP) constitutes a notable public health concern that significantly impacts the skeletal health of the global aging population. Its prevalence is steadily escalating, yet the intricacies of its diagnosis and treatment remain challenging. Recent investigations have illuminated a profound interlink between gut microbiota (GM) and bone metabolism, thereby opening new avenues for probing the causal relationship between GM and OP. Employing Mendelian randomization (MR) as the investigative tool, this study delves into the causal rapport between 211 varieties of GM and OP. The data are culled from genome-wide association studies (GWAS) conducted by the MiBioGen consortium, in tandem with OP genetic data gleaned from the UK Biobank, BioBank Japan Project, and the FinnGen database. A comprehensive repertoire of statistical methodologies, encompassing inverse-variance weighting, weighted median, Simple mode, Weighted mode, and MR-Egger regression techniques, was adroitly harnessed for meticulous analysis. The discernment emerged that the genus Coprococcus3 is inversely associated with OP, potentially serving as a deterrent against its onset. Additionally, 21 other gut microbial species exhibited a positive correlation with OP, potentially accentuating its proclivity and progression. Subsequent to rigorous scrutiny via heterogeneity and sensitivity analyses, these findings corroborate the causal nexus between GM and OP. Facilitated by MR, this study successfully elucidates the causal underpinning binding GM and OP, thereby endowing invaluable insights for deeper exploration into the pivotal role of GM in the pathogenesis of OP.


Asunto(s)
Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Osteoporosis , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Osteoporosis/prevención & control , Osteoporosis/genética , Huesos/metabolismo
18.
Clin Neurophysiol ; 166: 1-10, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068766

RESUMEN

OBJECTIVE: Sensory intelligence in the brain helps listeners automatically extract abstract auditory rules formed by invariant acoustic features from complex speech sound streams, presumably serving as the neural basis for speech comprehension. However, whether this intelligence is deficient in children with cochlear implants (CIs) remains unclear. METHODS: Mandarin Chinese monosyllables shared a flat lexical tone contour to form an abstract auditory rule but differed in other acoustic features to construct a complex speech sound stream. The abstract rule was occasionally violated by monosyllables with a rising or falling lexical tone. RESULTS: In normal hearing (NH) children, the abstract auditory rule could be extracted, as revealed by a mismatch negativity (MMN) and a late discriminative negativity (LDN). However, the MMN and LDN were only evoked in CI children with good hearing and speech performance. NH children with a higher speech perception or spatial hearing score had a greater MMN. The LDN was attenuated with increasing age in NH children. CONCLUSIONS: The sensory intelligence for extraction of auditory abstract rules, associated with speech perception, is deficient in CI children. This intelligence may gradually develop during childhood and adolescence. SIGNIFICANCE: Deficient sensory intelligence in CI children may aid in understanding poor speech comprehension in complex environments.


Asunto(s)
Implantes Cocleares , Potenciales Evocados Auditivos , Percepción del Habla , Humanos , Masculino , Femenino , Niño , Percepción del Habla/fisiología , Potenciales Evocados Auditivos/fisiología , Preescolar , Estimulación Acústica/métodos , Adolescente , Electroencefalografía/métodos , Inteligencia/fisiología
19.
Inorg Chem ; 63(30): 13886-13892, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39012498

RESUMEN

Polyhedral boranes have potential applications in medicine and material science due to their unique structure and stability. However, tedious and low-yield synthetic methods limited their application. Herein, we have developed a facile large-scale synthetic method for M2[B12H12] (M = Na, K) by the reaction of MBH4 with N,N-dipropylaniline borane in diglyme at 120 or 140 °C in up to 88% yield. The mechanistic studies indicated that intermediates, such as [B3H8]- and [B9H14]-, were formed in the formation process of [B12H12]2- anion, similar to previously reported. The formation of B2H6 from the N,N-dipropylaniline borane adducts is most important. The developed method avoided using toxic materials, with high yield, easily scaled up, raw materials are readily available. Additionally, the starting material, N,N-dipropylaniline, could be repeatedly used at least three times with similar yields, which is an economical way to facilitate industrial synthesis. It is believed that this method will support further application of Na2[B12H12] and K2[B12H12] as solid electrolytes for an all-solid-state batteries.

20.
Int J Phytoremediation ; 26(12): 2010-2020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38932483

RESUMEN

Urease-producing bacteria (UPB) are widely present in soil and play an important role in soil ecosystems. In this study, 65 UPB strains were isolated from cadmium (Cd)-polluted soil around a lead-zinc mine in Yunnan Province, China. The Cd tolerance, removal of Cd from aqueous solution, production of indoleacetic acid (IAA) and plant growth-promoting effects of these materials were investigated. The results indicate that among the 65 UPB strains, four strains with IAA-producing ability were screened and identified as Bacillus thuringiensis W6-11, B. cereus C7-4, Serratia marcescens W11-10, and S. marcescens C5-6. Among the four strains, B. cereus C7-4 had the highest Cd tolerance, median effect concentration (EC50) of 59.94 mg/L. Under Cd 5 mg/L, S. marcescens C5-6 had the highest Cd removal from aqueous solution, up to 69.83%. Under Cd 25 mg/kg, inoculation with B. cereus C7-4 significantly promoted maize growth in a sand pot by increasing the root volume, root surface area, and number of root branches by 22%, 29%, and 20%, respectively, and plant height and biomass by 16% and 36%, respectively, and significantly increasing Cd uptake in the maize roots. Therefore, UPB is a potential resource for enhancing plant adaptability to Cd stress in plants with Cd-polluted habitats.


This study utilized urease-producing bacteria screened from the soil of lead zinc mining areas in Yunnan, China as the research object, enriching the microbial resources in Yunnan. In addition, this article verified the IAA production ability and cadmium removal ability of urease-producing bacteria, and screened out bifunctional urease-producing bacteria that have potential in cadmium pollution control and plant growth promotion.


Asunto(s)
Biodegradación Ambiental , Cadmio , Microbiología del Suelo , Contaminantes del Suelo , Ureasa , Zea mays , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Zea mays/metabolismo , Ureasa/metabolismo , China , Ácidos Indolacéticos/metabolismo , Serratia marcescens/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA