Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharm Anal ; 2(3): 174-179, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29403739

RESUMEN

A new modification method for glass slides was developed and applied to make ThinPrep Pap smears, in order to increase the adhesion ability of cervical exfoliative cells. 3-glycidyloxypropyl trimethoxysilane (GOPS) was coated on the glass slides firstly on the slides, then poly-L-lysine (PLL) was covalently modified onto the above epoxy-terminated slides to form GOPS-PLL double decorated slides. The modified slides were characterized using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The cell adhesion ability effect was tested and compared with traditional PLL coated slides by fixing the cervical exfoliative cells on the double adorned slides. The control test was conducted by the bare glass slides unmodified. The cell morphology of cervical exfoliative cells adhered on different slides was observed under the microscope after Papanicolaou staining. The number of cervical exfoliative cells on the unmodified slides, PLL coated slides and GOPS-PLL coated slides was 1030±300, 3283±226 and 4119±280 (n=12), respectively. The data among the three different modification methods showed significant differences (one-way analysis of variance, ANOVA test, P<0.05). The cell capturing effect of the GOPS-PLL slide was the best among the three different modified slides. In addition, the GOPS-PLL slide could enhance the uniformity of the adhered cells and be widely applied to the ThinPrep system for cervical carcinoma screening to increase the accuracy rate of diagnosis.

2.
Luminescence ; 26(6): 754-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21567886

RESUMEN

A novel ternary complex, TbL(5) L'(ClO(4))(3) · 3H(2)O, two binary complexes, TbL(7) (ClO(4))(3) · 3H(2)O and TbL'(3.5) (ClO(4))(3) · 4H(2)O has been synthesized (using diphenyl sulphoxide as the first ligand L, bipyridine as the second ligand L'). Their composition was analysed by element analysis, coordination titration, IR spectra and (1) H-NMR, and the fluorescence emission mechanism, fluorescence intensities and phosphorescence spectra were also investigated by comparison. It was shown that the ternary rare-earth complex showed stronger fluorescence intensities than the binary rare-earth complexes in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 8.23 times, 3.58 times as strong as that of the binary systems TbL(7) (ClO(4))(3) · 3H(2)O and TbL'(3.5) (ClO(4))(3) · 4H(2)O, respectively. By fluorescence analysis it was found that both diphenyl sulphoxide and bipyridine could sensitize the fluorescence intensities of rare-earth ions. In particular, in the ternary rare-earth complex, introduction of bipyridine was of benefit to the fluorescence properties of Tb(III).


Asunto(s)
Derivados del Benceno/química , Piridinas/química , Espectrometría de Fluorescencia/métodos , Terbio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA