Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sleep Res ; : e14190, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453144

RESUMEN

The presence of a circadian cycle of cerebral blood flow may have implications for the occurrence of daily variations in cerebrovascular events in humans, but how cerebral blood flow varies throughout the day and its mechanism are still unclear. The study aimed to explore the diurnal variation of cerebral blood flow in healthy humans and its possible mechanisms. Arterial spin labelling images were collected at six time-points (09:00 hours, 13:00 hours, 17:00 hours, 21:00 hours, 01:00 hours, 05:00 hours) from 18 healthy participants (22-39 years old; eight females) to analyse diurnal variations in cerebral blood flow. Resting heart rate and blood pressure at six time-points and blood indicators (20-hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acids, prostaglandin E2, noradrenaline and nitric oxide) related to cerebral vascular tone at two time-points (09:00 hours and 21:00 hours) were collected to analyse possible influences on diurnal variations in cerebral blood flow. From 21:00 hours to 05:00 hours, parietal cortical relative cerebral blood flow tended to increase, while frontal cortical and cerebellar relative cerebral blood flow tended to decrease. There was a time-dependent negative correlation between parietal cortical relative cerebral blood flow and resting heart rate, whereas there was a time-dependent positive correlation between cerebellar relative cerebral blood flow and resting heart rate. The change of parietal cortical relative cerebral blood flow was positively correlated with the change of nitric oxide. There was also a time-dependent positive correlation between mean arterial pressure and mean whole-brain cerebral blood flow. The findings indicated that parietal cortical relative cerebral blood flow and frontal cortical/cerebellar relative cerebral blood flow showed roughly opposite trends throughout the day. The diurnal variations in relative cerebral blood flow were regional-specific. Diurnal variation of nitric oxide and neurogenic regulation may be potential mechanisms for diurnal variation in regional relative cerebral blood flow.

3.
J Magn Reson Imaging ; 59(1): 211-222, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078514

RESUMEN

BACKGROUND: How brain neural activity changes at multiple time points throughout the day and the neural mechanisms underlying time-dependent modulation of vigilance are less clear. PURPOSE: To explore the effect of circadian rhythms and homeostasis on brain neural activity and the potential neural basis of time-dependent modulation of vigilance. STUDY TYPE: Prospective. SUBJECTS: A total of 30 healthy participants (22-27 years old). FIELD STRENGTH/SEQUENCE: A 3.0 T, T1-weighted imaging, echo-planar functional MRI (fMRI). ASSESSMENT: Six resting-state fMRI (rs-fMRI) scanning sessions were performed at fixed times (9:00 h, 13:00 h, 17:00 h, 21:00 h, 1:00 h, and 5:00 h) to investigate fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) diurnal variation. The fALFF/ReHo and the result of the psychomotor vigilance task were used to assess local neural activity and vigilance. STATISTICAL TESTS: One-way repeated measures analysis of variance (ANOVA) was used to assess changes in vigilance (P < 0.05) and neural activity in the whole brain (P < 0.001 at the voxel level and P < 0.01 at the cluster level, Gaussian random field [GRF] corrected). Correlation analysis was used to examine the relationship between neural activity and vigilance at all-time points of the day. RESULTS: The fALFF/ReHo in the thalamus and some perceptual cortices tended to increase from 9:00 h to 13:00 h and from 21:00 h to 5:00 h, whereas the key nodes of the default mode network (DMN) tended to decrease from 21:00 h to 5:00 h. The vigilance tended to decrease from 21:00 h to 5:00 h. The fALFF/ReHo in the thalamus and some perceptual cortices was negatively correlated with vigilance at all-time points of the day, whereas the fALFF/ReHo in the key nodes of the DMN was positively correlated with vigilance. DATA CONCLUSION: Neural activities in the thalamus and some perceptual cortices show similar trends throughout the day, whereas the key nodes of the DMN show roughly opposite trends. Notably, diurnal variation of the neural activity in these brain regions may be an adaptive or compensatory response to changes in vigilance. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: 1.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Adulto Joven , Adulto , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Mapeo Encefálico/métodos , Homeostasis
4.
J Cancer Res Clin Oncol ; 149(17): 15425-15438, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37642725

RESUMEN

OBJECTIVE: To construct and validate conventional and radiomics models based on dual-layer spectral CT radiomics for preoperative prediction of lung ground glass nodules (GGNs) invasiveness. MATERIALS AND METHODS: A retrospective study was conducted on 176 GGNs patients who underwent chest non-contrast enhancement scan on dual-layer spectral detector CT at our hospital within 2 weeks before surgery. Patients were randomized into the training cohort and testing cohort. Clinical features, imaging features and spectral quantitative parameters were collected to establish a conventional model. Radiomics models were established by extracting 1781 radiomics features form regions of interest of each spectral image [120 kVp poly energetic images (PI), 60 keV images and electron density maps], respectively. After selecting the optimal radiomic features and integrating multiple machine learning models, the conventional model, PI model, 60 keV model, electron density (ED) model and combined model based on multimodal spectral images were finally established. The performance of these models was assessed through the evaluation of discrimination, calibration, and clinical application. RESULTS: In the conventional model, age, vacuole sign, 60 keV and ED were independent risk factors of invasiveness. The combined model using logistic regression-least absolute shrinkage and selection operator classifiers was the optimal model with a higher area under the curve of the training (0.961, 95% confidence interval, CI: 0.932-0.991) and testing set (0.944, 0.890-0.999). CONCLUSION: The combined models are helpful to predict the invasiveness of GGNs before surgery and guide the individualized treatment of patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Invasividad Neoplásica/patología , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/cirugía , Adenocarcinoma del Pulmón/patología
5.
Neuroradiology ; 65(5): 923-931, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36892613

RESUMEN

PURPOSE: To explore the static and dynamic characteristics of intrinsic brain activity (IBA) in subcortical ischemic vascular disease (SIVD) patients with or without cognitive impairment. METHODS: In total, 90 participants were recruited, including 32 SIVD patients with cognitive impairment (SIVD-CI, N = 32), 26 SIVD patients with no cognitive impairment (SIVD-NCI, N = 26), and 32 healthy controls (HC, N = 32) matched for age, gender, and education. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning and neuropsychological tests. Amplitude of low-frequency fluctuation (ALFF) was calculated to reflect static alterations of regional IBA. Sliding window analysis was conducted in order to explore the dynamic characteristics. RESULTS: Both SIVD-CI and SIVD-NCI group showed significantly decreased ALFF in left angular gyrus (ANG), whereas SIVD-CI group showed increased ALFF in right superior frontal gyrus (SFG), compared with HCs. Furthermore, SIVD-CI group showed significantly decreased ALFF dynamics (dALFF) in right precuneus (PreCu) and left dorsal anterior cingulate cortex (dACC), compared with HC and SIVD-NCI groups (Gaussian random field-corrected, voxel-level P < 0.001, cluster-level P < 0.05). No dynamic changes were detected between SIVD-NCI group and HC group. The mean ALFF value in left ANG of SIVD-CI group was correlated with the score of delayed memory scale. CONCLUSION: ANG may be a vulnerable brain region in SIVD patients. Temporal dynamic analysis could serve as a sensitive and promising method to investigate IBA alterations in SIVD patients.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedades Vasculares , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Giro del Cíngulo
6.
Brain Sci ; 12(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36552141

RESUMEN

PICALM rs3851179, one of the genes most frequently linked to susceptibility of late-onset Alzheimer's disease (LOAD), plays a crucial role in regulating amyloid precursor protein, and amyloid ß (Aß) transcytosis. To explore the effects of PICALM and AD continuum stage on cortex thickness, CSF Aß, and tau, 188 cognitively normal controls, 261 MCI patients, and 140 early LOAD patients were recruited, and each group was divided into rs3851179 A-carriers and GG-carriers. A full factorial ANCOVA was used to analyze the main effects and interactive effects of AD continuum stage, and PICALM. The interactive effects of AD continuum stage and PICALM on cortex thickness and CSF biomarkers were not significant. The main effect of PICALM was significant on the left postcentral cortex thickness, and the cortex thickness of A-carriers was less than that of GG-carriers. The rs3851179 A-carriers displayed higher Aß42 levels and Aß42/40 ratios, and lower P/T-tau ratios, compared with GG-carriers. A higher MMSE score was found in A-carriers among the LOAD patients. In conclusion, the main effects of PICALM were independent of AD continuum stage, and PICLAM rs3851179 genotypes may modulate left postcentral cortex thickness, Aß42 level, and P/T-tau ratio. The rs3851179 A-allele may protect the cognitive function of LOAD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...