Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Liver Int ; 44(8): 1937-1951, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38606676

RESUMEN

BACKGROUND AND PURPOSE: Liver fibrosis is a wound-healing reaction which is the main cause of chronic liver diseases worldwide. The activated hepatic stellate cell (aHSC) is the main driving factor in the development of liver fibrosis. Inhibiting autophagy of aHSC can prevent the progression of liver fibrosis, but inhibiting autophagy of other liver cells has opposite effects. Hence, targeted inhibition of autophagy in aHSC is quite necessary for the treatment of liver fibrosis, which prompts us to explore the targeted delivery system of small molecule autophagy inhibitor hydroxychloroquine (HCQ) that can target aHSC and alleviate the liver fibrosis. METHODS: The delivery system of HCQ@retinol-liposome nanoparticles (HCQ@ROL-LNPs) targeting aHSC was constructed by the film dispersion and pH-gradient method. TGF-ß-induced HSC activation and thioacetamide (TAA)-induced liver fibrosis mice model were established, and the targeting ability and therapeutic effect of HCQ@ROL-LNPs in liver fibrosis were studied subsequently in vitro and in vivo. RESULTS: HCQ@ROL-LNPs have good homogeneity and stability. They inhibited the autophagy of aHSC selectively by HCQ and reduced the deposition of extracellular matrix (ECM) and the damage to other liver cells. Compared with the free HCQ and HCQ@LNPs, HCQ@ROL-LNPs had good targeting ability, showing enhanced therapeutic effect and low toxicity to other organs. CONCLUSION: Construction of HCQ@ROL-LNPs delivery system lays a theoretical and experimental foundation for the treatment of liver fibrosis and promotes the development of clinical therapeutic drugs for liver diseases.


Asunto(s)
Autofagia , Células Estrelladas Hepáticas , Hidroxicloroquina , Cirrosis Hepática , Hidroxicloroquina/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Animales , Autofagia/efectos de los fármacos , Ratones , Cirrosis Hepática/tratamiento farmacológico , Liposomas , Nanopartículas , Masculino , Modelos Animales de Enfermedad , Humanos , Tioacetamida , Ratones Endogámicos C57BL
2.
Artículo en Inglés | MEDLINE | ID: mdl-37899504

RESUMEN

Liver fibrosis is one of the most common and highly prevalent chronic liver diseases caused by multiple pathogenic factors, and there is still no effective therapeutic drugs up to now. The activated hepatic stellate cells (aHSCs) are the main executor in liver fibrosis, and the autophagy plays a key role in the proliferation and differentiation of aHSCs, which promotes the development of liver fibrosis. However, autophagy has the opposite effect on the different kinds of liver cells in the development of liver fibrosis, and the clinical treatment has been limited by the poor selectivity and inefficient drug delivery to aHSCs. Therefore, in this study, a liposome (Lip) and exosome (Exo) two-membrane hybrid nanobiomimetic delivery system HCQ@VA-Lip-Exo was designed, which was modified by vitamin A (VA) to target the aHSCs and carried the autophagy inhibitor hydroxychloroquine (HCQ). The experimental results in vitro and in vivo revealed that the constructed aHSC-targeted hybrid delivery system HCQ@VA-Lip-Exo combined with the benefits of HCQ and exosomes derived from bone marrow mesenchymal stem cells. HCQ@VA-Lip-Exo had good aHSC-targeted delivery ability, effective autophagy inhibition, and synergistical anti-liver fibrosis performance, thus reducing the production and deposition of the extracellular matrix to inhibit the liver fibrosis. This combined strategy provided a potential idea for the construction and clinical application of a two-membrane hybrid delivery system as an effective targeted therapy of liver fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA