Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 21(12): 2507-2524, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37553251

RESUMEN

Verticillium dahliae, one of the most destructive fungal pathogens of several crops, challenges the sustainability of cotton productivity worldwide because very few widely-cultivated Upland cotton varieties are resistant to Verticillium wilt (VW). Here, we report that REVEILLE2 (RVE2), the Myb-like transcription factor, confers the novel function in resistance to VW by regulating the jasmonic acid (JA) pathway in cotton. RVE2 expression was essentially required for the activation of JA-mediated disease-resistance response. RVE2 physically interacted with TPL/TPRs and disturbed JAZ proteins to recruit TPL and TPR1 in NINJA-dependent manner, which regulated JA response by relieving inhibited-MYC2 activity. The MYC2 then bound to RVE2 promoter for the activation of its transcription, forming feedback loop. Interestingly, a unique truncated RVE2 widely existing in D-subgenome (GhRVE2D) of natural Upland cotton represses the ability of the MYC2 to activate GhRVE2A promoter but not GausRVE2 or GbRVE2. The result could partially explain why Gossypium barbadense popularly shows higher resistance than Gossypium hirsutum. Furthermore, disturbing the JA-signalling pathway resulted into the loss of RVE2-mediated disease-resistance in various plants (Arabidopsis, tobacco and cotton). RVE2 overexpression significantly enhanced the resistance to VW. Collectively, we conclude that RVE2, a new regulatory factor, plays a pivotal role in fine-tuning JA-signalling, which would improve our understanding the mechanisms underlying the resistance to VW.


Asunto(s)
Verticillium , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transducción de Señal/genética , Gossypium/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Sci ; 317: 111197, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35193746

RESUMEN

QTLs for yield-related traits in tetraploid cotton have been widely mapped, but QTLs introduced from diploid species into tetraploid cotton background remain uninvolved. Here, a stable introgression line with the traits of small boll and seed on Chr. A12, IL197 derived from Gossypium hirsutum (2n = AADD = 52) × Gossypium arboreum (2n = AA = 26), was employed to construct the F2 and F3 secondary populations for fine-mapping QTLs of yield-related traits. QTL analysis showed eight QTLs were detected for three traits, boll weight (BW), seed index (SI, one-hundred-seed weight in g), and lint percentage, with 3.94-28.13 % of the phenotypic variance explained. Of them, a stable major QTL, q(BW + SI)-A12-1 controlling both BW and SI and covering the shortest region in Chr. A12, was further narrowed into a 60.09 kb-interval through substitution mapping. Finally, five candidate genes were detected in the interval. The qRT-PCR analysis revealed only TIP41-like family protein (TIP41L) kept up-regulated expression and significantly lower in TM-1 than that in IL197 from -1 DPA to 15 DPA during cotton boll rapid developmental stage. Therefore, TIP41L gene is speculated as the most likely candidate gene. Comparative analysis with the other four allotetraploid species showed TIP41L gene was probably diverged after the formation of allotetraploid cotton, which may be selected and swept during domestication of modern upland cotton because small boll and seed are detrimental to fibre yield of cotton. This research would lay a solid foundation for further elucidating the molecular mechanism of cotton boll and seed development.


Asunto(s)
Genes de Plantas , Gossypium , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Mapeo Cromosómico , Fibra de Algodón , Gossypium/genética , Fenotipo , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...