Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38339498

RESUMEN

Satellite-derived Sea Surface Temperature (SST) and sea-surface Chlorophyll a concentration (Chl-a), along with Automatic Identification System (AIS) data of fishing vessels, were used in the examination of the correlation between fishing operations and oceanographic factors within the northern Indian Ocean from March 2020 to February 2023. Frequency analysis and the empirical cumulative distribution function (ECDF) were used to calculate the optimum ranges of two oceanographic factors for fishing operations. The results revealed a substantial influence of the northeast and southwest monsoons significantly impacting fishing operations in the northern Indian Ocean, with extensive and active operations during the period from October to March and a notable reduction from April to September. Spatially, fishing vessels were mainly concentrated between 20° N and 6° S, extending from west of 90° E to the eastern coast of Africa. Observable seasonal variations in the distribution of fishing vessels were observed in the central and southeastern Arabian Sea, along with its adjacent high sea of the Indian Ocean. Concerning the marine environment, it was observed that during the northeast monsoon, the suitable SST contributed to high CPUEs in fishing operation areas. Fishing vessels were widely distributed in the areas with both mid-range and low-range Chl-a concentrations, with a small part distributed in high-concentration areas. Moreover, the monthly numbers of fishing vessels showed seasonal fluctuations between March 2020 and February 2023, displaying a periodic pattern with an overall increasing trend. The total number of fishing vessels decreased due to the impact of the COVID-19 pandemic in 2020, but this was followed by a gradual recovery in the subsequent two years. For fishing operations in the northern Indian Ocean, the optimum ranges for SST and Chl-a concentration were 27.96 to 29.47 °C and 0.03 to 1.81 mg/m3, respectively. The preliminary findings of this study revealed the spatial-temporal distribution characteristics of fishing vessels in the northern Indian Ocean and the suitable ranges of SST and Chl-a concentration for fishing operations. These results can serve as theoretical references for the production and resource management of off-shore fishing operations in the northern Indian Ocean.

2.
Environ Sci Pollut Res Int ; 30(57): 119847-119862, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37930570

RESUMEN

Marine oil snow (MOS) potentially forms after an oil spill. To fully understand the mechanism of its formation, we investigated the effects of suspended particles (SP) and dispersants on MOS formation of crude oil and diesel oil by laboratory experiments. In the crude oil experiment, the SP concentration of 0.2 g L-1 was more suitable for crude oil MOS formation. The addition of dispersants significantly stimulated N and TV during MS/MOS formation of SP at 0.4 g L-1 and 0.8 g L-1 concentration (p < 0.05). Without SP, the dispersants also stimulated crude oil MOS formation. Furthermore, the concentration of SP had a significantly positive effect on the reduction of the total amount of N-alkanes (p < 0.05). In the diesel oil experiment, after adding dispersants to diesel oil, the maximum N, Dm, and TV values at a SP concentration of 0.2 g L-1 were significantly higher than those at 0.4 g L-1 and 0.8 g L-1 (p < 0.05). Besides, we found that dispersants stimulated MOS formation in diesel oil at a SP concentration of 0.2 g L-1. However, the dispersants had an inhibitory effect on diesel oil MOS formation without SP. Notably, the MOS formed by diesel oil appeared white, unlike the black MOS associated with crude oil. These findings are important for the environmental impact of oil spills and elevated SP concentrations.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Alcanos , Tensoactivos
3.
Environ Res ; 228: 115810, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011796

RESUMEN

The coastal waters around the Yangma Island are an important mariculture area of raft-raised scallop and bottom-seeded sea cucumber in the North Yellow Sea, China. Large-scale hypoxia in the bottom water of this area has caused the death of a large number of sea cucumbers and heavy economic losses. To find out the formation mechanism of hypoxia, the data obtained in each August during 2015-2018 were analyzed. Compared with the non-hypoxic year (2018), the temperature, trophic index (TRIX) and dissolved organic carbon (DOC) in the bottom water were relatively higher, and the water column was stratified causing by continuous high air temperature and low wind speed meteorological conditions in the hypoxic years (2015-2017). These sites with the coexistence of thermocline and halocline, and the thickness of thermocline >2.5 m and its upper boundary >7.0 m deep, were prone to hypoxia. Spatially, the hypoxic place was highly consistent with the scallop cultivating places, and the DOC, TRIX, NH4+/NO3- and apparent oxygen utilization (AOU) at the culture sites were higher, indicating that organic matter and nutrients released by scallops may lead to local oxygen depletion. In addition, the bottom water of the culture sites had higher salinity, but lower turbidity and temperature, indicating that the slowed water exchange caused by scallop culture was a dynamic factor of hypoxia. All sites with AOU >4 mg/L at the bottom had hypoxia occurrence, even if there was no thermocline. In other words, stratification promoted the formation of hypoxia in coastal bottom water, but it was not indispensable. The raft-raised scallop culture could promote the formation of coastal hypoxia, which should arouse the attention for other coastal areas with intensive bivalve production.


Asunto(s)
Hipoxia , Pectinidae , Animales , Oxígeno/análisis , Temperatura , Agua , China
4.
Sci Total Environ ; 876: 162715, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36907398

RESUMEN

In this research, the atmospheric dry and wet deposition fluxes of particulate organic carbon (POC) over the coastal waters around the Yangma Island in North Yellow Sea were investigated. Combining the results of this research and previous reports about the wet deposition fluxes of dissolved organic carbon (DOC) in precipitation (FDOC-wet) and dry deposition fluxes of water-dissolvable organic carbon in atmospheric total suspended particles (FDOC-dry) in this area, a synthetic assessment of the influence of atmospheric deposition on the eco-environment was conducted. It was found that the annual dry deposition flux of POC was 1097.9 mg C m-2 a-1, which was approximately 4.1 times that of FDOC-dry (266.2 mg C m-2 a-1). For wet deposition, the annual flux of POC was 445.4 mg C m-2 a-1, accounting for 46.7 % that of FDOC-wet (954.3 mg C m-2 a-1). Therefore, atmospheric POC was mainly deposited through dry process with the contribution of 71.1 %, which was contrary to the deposition of DOC. Considering the indirect input of organic carbon (OC) from atmospheric deposition, that is, the new productivity supported by nutrient input from dry and wet deposition, the total OC input from atmospheric deposition to the study area could be up to 12.0 g C m-2 a-1, highlighting the important role of atmospheric deposition in the carbon cycling of coastal ecosystems. The contribution of direct and indirect input of OC through atmospheric deposition to the dissolved oxygen consumption in total seawater column was assessed to be lower than 5.2 % in summer, suggesting a relatively smaller contribution to the deoxygenation in summer in this region.

5.
Sci Total Environ ; 854: 158540, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113787

RESUMEN

To assess the source characteristics of coastal aerosols and evaluate the contribution of atmospheric deposition to particulate organic matter in surface seawater, total suspended particulates (TSP) were collected at a shore-based site on the south coast of North Yellow Sea from December 2019 through November 2020. The samples were analyzed for total organic carbon (TOC) and nitrogen (TN) as well as stable carbon and nitrogen isotope (δ13C and δ15N). The results showed that the annual mean concentrations of TOC and TN were 5.36 ± 4.74 and 5.12 ± 6.52 µg m-3, respectively. δ13C fluctuated between -25.1 ‰ and -19.2 ‰ with an annual mean of -24.0 ± 1.0 ‰ and a significant seasonal variation (P < 0.05) characterizing by the enrichment in winter (-23.4 ± 0.6 ‰) compared to other seasons, which was probably related to the massive coal combustion. Besides, δ15N ranged from 7.9 ‰ to 21.1 ‰ with an annual mean of 12.5 ± 2.9 ‰ and a less pronounced seasonal pattern (P = 0.23). The Bayesian isotope-mixing model showed that, annually, the most important source of TSP was biogenic and biomass source (55.5 ± 10.8 %), followed by fossil fuel combustion (31.9 ± 9.0 %), while the marine contribution was less (12.6 ± 2.3 %). For TOC and TN, the dominated sources were fossil fuel combustion (47.7 ± 3.4 %) and biogenic and biomass source (57.3 ± 11.7 %), respectively. Furthermore, the model results indicated that the contribution of atmospheric deposition to suspended particulate matter in surface seawater was 18.0 ± 11.0 %, 17.1 ± 6.7 % and 10.2 ± 2.0 % in autumn, spring and summer, respectively. For particulate organic carbon in surface seawater, the contribution of atmospheric deposition was 35.2 ± 3.5 % in spring, highlighting the huge impact of atmospheric deposition on particulate carbon cycling in coastal waters.

6.
Mar Pollut Bull ; 182: 114036, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35985129

RESUMEN

To determine the ecological effects of atmospheric wet deposition of dissolved nutrients on the coastal waters around the Yangma Island, rain and snow samples were collected and analyzed at a shore-based site for one year. The wet deposition fluxes of dissolved inorganic nitrogen and phosphorus (DIN and DIP) and dissolved organic nitrogen and phosphorus were 69.2, 0.136, 13.3 and 0.143 mmol m-2 a-1, respectively. In summer, the new production fueled by wet deposition accounted for 19.3 % of that in seawater and 16.4 % of the amount of particulate organic carbon ingested by the scallops cultivated in the study area, indicating the potential contribution of wet deposition to fishery resources. Meanwhile, precipitation increased the seasonal average DIN/DIP ratios in surface seawater by 17.7 %, 16.3 %, 23.4 % and 6.5 % in spring, summer, autumn and winter, respectively, which could change the composition of ecological community and cause obvious negative impact on the ecosystem and mariculture.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , China , Explotaciones Pesqueras , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Estaciones del Año
7.
Sci Total Environ ; 844: 157130, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35792266

RESUMEN

To address the potential roles of atmospheric wet deposition in carbon cycling in coastal waters, a comprehensive study of the biogeochemical properties of dissolved organic matter (DOM) in precipitation and the resulting implication in a mariculture area in North Yellow Sea was conducted. The annual mean concentrations of dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) were 1.52 ± 1.52 mg C L-1, 0.36 ± 0.66 m-1 and 0.38 ± 0.35 QSU, respectively. The concentrations of most DOM proxies exhibited significant negative correlations with the corresponding precipitation amount (R2 = 0.15-0.40, P < 0.01), but the dilution effects became less significant when the precipitation amount exceeded 10.2, 10.7, 10.2 and 2.4 mm for DOC, CDOM, highly­oxygenated and hypoxic structured humic-like substances, respectively. Seasonally, the dominant precipitation type in winter was snowfall, in which the DOM contained more high-molecular-weight compounds with higher aromaticity and humification degree, while the characteristics of DOM in intensive rainfall in summer were contrary to those in winter. The wet deposition flux of DOC to this region was estimated to be 6.31 × 108 g C a-1, which was 3.3 and 1.4 times that of the dry deposition and local riverine input, thereby contributing to 4.0 % of the DOC storage in the study area. In summer, the intensive input of DOC through wet deposition (0.43 g C m-2) to surface seawater could enrich its bioavailable DOC by 10.7 µmol L-1, the complete aerobic decomposition of which would cause an obvious dissolved oxygen depletion in the surface seawater by 21.4 µmol L-1, demonstrating the influence of wet deposition on summer deoxygenation in coastal waters.


Asunto(s)
Materia Orgánica Disuelta , Agua de Mar , China , Sustancias Húmicas/análisis , Estaciones del Año , Agua de Mar/química
8.
Harmful Algae ; 114: 102218, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550297

RESUMEN

Some species of algae such as cyanobacteria can vertically migrate through water during a day, which is a notable floating feature of harmful algae blooms. To date, this process has been observed and quantified using visible and near-infrared (VNIR) bands from spaceborne sensors with high temporal resolution (i.e., Geostationary Ocean Color Imager; GOCI). In this study, we conducted an in-situ measurement at Taihu Lake in China to investigate the ultraviolet (UV) reflection spectra of floating cyanobacteria blooms, and identified that they have significant UV reflection features (higher than that of background water) associated with their floating status. This has been demonstrated using spaceborne UV images at both 355 and 385 nm from the Ultraviolet Imager (UVI) onboard Haiyang-1C (HY-1C) of China. Compared with synchronous optical images from the Chinese Ocean Color and Temperature Scanner (COCTS), we found that UVI has a special ability to distinguish cyanobacteria floating on water surface. Additionally, the intensity of the UV signals obtained is positively correlated with the cyanobacterial equivalent density. Ultraviolet remote sensing, therefore, can work as a new approach for the detection of harmful algae blooms and help determine the floating status of them, which deserves further research.


Asunto(s)
Cianobacterias , Agua , Monitoreo del Ambiente/métodos , Floraciones de Algas Nocivas , Lagos/microbiología , Rayos Ultravioleta
9.
Sci Total Environ ; 807(Pt 3): 150989, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34656566

RESUMEN

In-situ field investigations coupled with incubation experiments were conducted in the coastal waters adjacent to the Yangma Island to explore the impacts of intensive bay scallop farming on the quantity and composition of dissolved organic matter (DOM). During the scallop farming period, the values of dissolved organic carbon (DOC), chromophoric dissolved organic matter (CDOM) and fluorescence dissolved organic matter (FDOM) in the mariculture area (MA) were generally higher than those in the non-mariculture area (NMA). Bay scallops released a large amount of DOM with the characteristics of high molecular weight and low degree of humification into the water column through excretion, which altered the DOM biogeochemical cycle. The DOM excretion fluxes by scallop were calculated based on incubation experiments. The results showed that, without considering the DOM transformation in the water, the excretion process of bay scallops in a growth cycle can increase the concentration of DOC, CDOM and fluorescent components C1-C4 in the seawater in MA by 19.7 µmol l-1, 0.048 m-1, 0.065 QSU, 0.164 QSU, 0.017 QSU and 0.015 QSU, respectively. Assuming that the labile part of DOM excreted by scallops was completely aerobic decomposed, it could reduce DO and pH in the seawater by ~13.4 µmol l-1 and ~ 0.018 in MA. This study highlights the impact of human activities (scallop farming activities) on DOM cycle in coastal waters, which can help guide future policy formulating of mariculture and ecological protection.


Asunto(s)
Materia Orgánica Disuelta , Pectinidae , Agricultura , Animales , China , Granjas , Humanos
10.
Sci Total Environ ; 818: 151772, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34808180

RESUMEN

Water-soluble organic matter (WSOM) is a ubiquitous group of organic compounds in the atmosphere, which plays an important role in the biogeochemical cycle. To determine the quantity and chemical composition of the dry deposition of WSOM and assess its ecological effects on the coastal waters around the Yangma Island, North Yellow Sea, total suspended particulates (TSP) samples collected at a coastal site for one year from December 2019 to November 2020 were analyzed. The concentration of water-soluble organic carbon (WSOC) and the spectroscopy of chromophoric dissolvable organic matter (CDOM) and fluorescent dissolvable organic matter (FDOM) in the samples showed highly temporal variability with higher values in winter and spring than in summer and autumn. In addition, the correlation analysis revealed that the content of WSOM in the TSP as well as its chemical composition were greatly influenced by the sources and aging processes of aerosols. Moreover, the dry deposition flux of WSOC to the study area was calculated to be 0.79 ± 0.47 mg C m-2 d-1, namely 1.91 × 108 g C yr-1, which could increase the annual average concentration of dissolved organic carbon in surface seawater by 10.2 µmol L-1, implying that the dry deposition could sustain the secondary production and affect the carbon cycle of the coastal waters. Besides, the complete decomposition of bioavailable WSOC of dry deposition could reduce the annual average concentration of dissolved oxygen in surface seawater by 4.8 µmol L-1, which could contribute partly to the seawater deoxygenation in the coastal area around the Yangma Island.


Asunto(s)
Carbono , Agua , Aerosoles/análisis , Atmósfera/análisis , Carbono/análisis , China , Agua de Mar/análisis , Agua/análisis
11.
Mar Pollut Bull ; 173(Pt B): 113092, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34744011

RESUMEN

During 2015-2020, 26 cruises were carried out in a bay scallop farming area, North Yellow Sea, to study the dissolved oxygen (DO) dynamics and its controlling factors. Significant DO depletion (deoxygenation) was observed in the summertime with the decrease rates of 0.31-0.55 and 0.96-2.10 µmol d-1 in the surface and bottom waters, respectively, which were comprehensively forced by temperature, photosynthesis and microbial respiration. Seasonally, temperature was the main driver of the deoxygenation processes. In the surface water, DO dynamics were dominated by temperature-induced solubility changes, while the photosynthesis offset the effects of physical processes to a certain extent; in the bottom water, its dynamics were mainly attributed to the comprehensive control of temperature-induced solubility changes and biological respiration. Overall, the results suggested that the occurrence of hypoxia and acidification in the coastal waters were highly associated with the formation of temperature-induced stratification under complex hydrodynamic processes.


Asunto(s)
Pectinidae , Agua , Agricultura , Animales , Estaciones del Año , Temperatura
12.
Sci Total Environ ; 798: 149214, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333434

RESUMEN

Seven cruises were carried out in a bay scallop (Argopecten irradians) farming area and its surrounding waters, North Yellow Sea, from March to November 2017 to study the dynamics of the carbonate system and its controlling factors. Results indicated that the studied parameters were highly variability over a range of spatiotemporal scales, comprehensively forced by various physical and biological processes. Mixing effect and scallop calcification played the most important role in the seasonal variation of total alkalinity (TAlk). For dissolved inorganic carbon (DIC), in addition to mixing, air-sea exchange and microbial activity, e.g. photosynthesis and microbial respiration processes, had more important effects on its dynamics. Different from the former, the changes of water pHT, partial pressure of CO2 (pCO2) and aragonite saturation state (ΩA) were mainly controlled by the combining of the temperature, air-sea exchange, microbial activity and scallop metabolic activities. In addition, the results indicated that massive scallop farming can significantly increase the DIC/TAlk ratio by reducing the TAlk concentration in seawater, thereby reducing the buffering capacity of the carbonate system in seawater especially for ΩA. Preliminary calculated, ~75.7 and ~45.5 µmol kg-1 of TAlk were removed from the surface and bottom waters respectively in one scallop cultivating cycle. If these carbonates cannot be replenished in time, it is likely to accelerate the acidification process of coastal waters. This study highlighted the control mechanism of the carbonate system under the influence of bay scallop farming, and provided useful information for revealing the potential link between human activities (shelled-mollusc mariculture) and coastal acidification.


Asunto(s)
Carbonatos , Pectinidae , Agricultura , Animales , Carbonatos/análisis , China , Humanos , Concentración de Iones de Hidrógeno , Agua de Mar , Mariscos
13.
Chemosphere ; 273: 129641, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33493818

RESUMEN

Surface sediments were collected from a mariculture area adjacent to the Yangma Island suffering from hypoxia in summer, and a laboratory static incubation was conducted to study the sedimentary oxygen consumption (SOC) and the benthic fluxes of nutrients and fluorescent dissolved organic matter (FDOM). Compared with some coastal areas, the SOC of the studied area was relatively low in summer with the value of 2.34-6.03 mmol m-2 d-1. Sediment acted as an important source of nutrients (except for nitrate) and FDOM for the overlying water. Dissolved oxygen (DO) in the overlying water could affect the decomposition mode of sedimentary organic matter (SOM), i.e. aerobic and anaerobic decomposition and subsequently dominated the release of nutrients and FDOM. When DO > 50 µmol l-1, it was beneficial to the release of ammonium, silicate and FDOM. In contrast, low oxygen conditions, i.e. DO < 100 µmol l-1, stimulated sediment phosphate efflux. In addition, scallop farming activities also affected the SOC and benthic flux of nutrients and FDOM mainly through biological deposition.


Asunto(s)
Sedimentos Geológicos , Pectinidae , Agricultura , Animales , China , Consumo de Oxígeno
14.
Sci Total Environ ; 759: 143486, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33250257

RESUMEN

In situ field investigations coupled with laboratory incubations were employed to explore the surface sedimentary phosphorus (P) cycle in a mariculture area adjacent to the Yangma Island suffering from summer hypoxia in the North Yellow Sea. Five forms of P were fractionated, namely exchangeable P (Ex-P), iron-bound P (FeP), authigenic apatite (CaP), detrital P (De-P) and organic P (OP). Total P (TP) varied from 13.42 to 23.88 µmol g-1 with the main form of inorganic P (IP). The benthic phosphate (DIP) fluxes were calculated based on incubation experiments. The results show that the sediment was an important source of P in summer with ~39% of the bioavailable P (BioP) recycled back into the water column. However, the sediment acted a sink of P in autumn. The benthic DIP fluxes were mainly controlled by the remobilizing of FeP, Ex-P and OP under contrasting redox conditions. In August (hypoxia season), ~0.92 µmol g-1 of FeP and ~0.52 µmol g-1 of OP could be transformed to DIP and released into water, while ~0.36 µmol g-1 of DIP was adsorbed to clay minerals. In November (non-hypoxia season), however, ~0.54 µmol g-1 of OP was converted into DIP, while ~0.55 µmol g-1 and ~0.28 µmol g-1 of DIP was adsorbed to clay minerals and bind to iron oxides. Furthermore, scallop farming activities also affected the P mobilization through biological deposition and reduced hydrodynamic conditions. The burial fluxes of P varied from 11.67 to 20.78 µmol cm-2 yr-1 and its burial efficiency was 84.7-100%, which was consistent with that in most of the marginal seas worldwide. This study reveals that hypoxia and scallop farming activities can significantly promote sedimentary P mobility, thereby causing high benthic DIP flux in coastal waters.


Asunto(s)
Pectinidae , Fósforo , Agricultura , Animales , China , Monitoreo del Ambiente , Sedimentos Geológicos , Hipoxia , Océanos y Mares , Fósforo/análisis , Estaciones del Año
15.
Mar Pollut Bull ; 155: 111147, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32310103

RESUMEN

The surface sediments from the Bohai Sea (BS) and the northern Yellow Sea (NYS) were analyzed for acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) to assess the sediment quality. The results indicated that >60% of the samples were found to have possible adverse effects on aquatic life in the BS based on the difference between the concentrations of AVS ([AVS]) and SEM ([SEM]), and the corresponding percentage in the NYS was <25%. Nevertheless, there was no indication of adverse effects for all the BS and the NYS samples when the total organic carbon (TOC) concentration was introduced in the sediment quality evaluation with [AVS] and [SEM]. The grain size composition, TOC, water content and pH all had significant influence on the distribution of [SEM] and the [SEM]/[AVS] ratios; while, in contrast, the distribution of [AVS] could be mainly determined by the redox condition of sediment.


Asunto(s)
Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Ácidos , Monitoreo del Ambiente , Sedimentos Geológicos , Metales/análisis , Sulfuros/análisis
16.
PLoS One ; 14(8): e0220058, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31386653

RESUMEN

A time series of satellite data on Chlorophyll-a concentration (Chl-a) that used ocean color was studied to determine mechanisms of phytoplankton variation in recent decade in the Yellow Sea, China during 2003-2015. The variability patterns on seasonal and inter-annual oscillation periods were confirmed using the Empirical Orthogonal Function (EOF), and Morlet wavelet transform analyses, respectively. The first EOF mode for Chl-a was dominated by obvious spring and fall blooms in a spatial pattern that was related to the strong mixing of the water masses from the Yellow Sea Cold Warm Mass (YSCWM) and the Yellow Sea Warm Current (YSWC) in winter. The second EOF mode for Chl-a showed an opposite spatial pattern between the northern and southern regions. The temporal coefficient showed differences in the timing of blooms. On an inter-annual scale, Chl-a indicated variation at periods of 2-4 years during 2003-2015. Chl-a showed a significantly negative correlation with the sea surface temperature (r = -0.21, p<0.01), with time lags of 4 months (Chl-a ahead). Chl-a was coupled with El Niño Southern Oscillation (ENSO) events, with a positive correlation (r = 0.46, p<0.01) at a lag of 3-5 months (ENSO ahead). The present study demonstrated that the variation in phytoplankton biomass was controlled primarily by water mass seasonally, and it was influenced by ENSO events on an inter-annual scale.


Asunto(s)
Biomasa , Monitoreo del Ambiente , Océanos y Mares , Fitoplancton/metabolismo , Nave Espacial , Temperatura , China , Clorofila A/metabolismo , Análisis Multivariante , Estaciones del Año
17.
Sensors (Basel) ; 18(8)2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115895

RESUMEN

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.

18.
Chemosphere ; 212: 429-437, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30153615

RESUMEN

A method was modified for the preconcentration of platinum (Pt), palladium (Pd) and rhodium (Rh) from seawater by a solid phase extraction using a commercially available resin Nobias-chelate PA1®. All the determination was conducted using inductively coupled plasma mass spectrometry (ICP-MS) which had a low detection limit for Pt, Pd and Rh, about 16.53, 16.41 and 26.88 pg L-1, respectively. It was found that the adsorption performance of the resin was closely related to the matrix, ligands and pH of the samples. Significant difference in recovery was found in various samples: seawater ≈ artificial seawater > ultra-pure deionized water. This method had low method blank in the range of 5.51-8.89 pg L-1 and high enrichment factor of up to 180-200. The recoveries of Pt and Pd were 93 ±â€¯4.2% in the spiked real seawater. However, the recovery of Rh on the resin was below 70% but stable in the range of 65-68%. It indicated that the Rh recovery seemed to be reproducible and higher volumes of seawater must be processed in order to obtain the lower limit of quantification and excellent recovery.


Asunto(s)
Espectrometría de Masas/métodos , Paladio/análisis , Platino (Metal)/análisis , Rodio/análisis , Agua de Mar/análisis , Extracción en Fase Sólida/métodos , Límite de Detección , Paladio/aislamiento & purificación , Platino (Metal)/aislamiento & purificación , Rodio/aislamiento & purificación , Agua de Mar/química
19.
Mar Pollut Bull ; 133: 150-156, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30041302

RESUMEN

The world's largest green tide originated from the Jiangsu Shoal of the Yellow Sea was due to fast reproduction of floating green macroalgae (Ulva prolifera). It brought significant impacts on marine environment and ecosystem in the Yellow Sea. In this study, we examined the expansion of green tide from the Jiangsu Shoal during the period from 29 April to 25 June 2016. Using high-resolution satellite images, we revealed a declined growth rate during the northward drifting of early-stage green tide for the first time, i.e., the green tide had higher growth rate (up to 25% per day) in the turbid waters of the Jiangsu Shoal in May and a lower growth rate (low to 3% per day) in the relatively clear waters in the middle of the western Yellow Sea in June, which suggests that water clarity might not be the key factor controlling the growth rate of the floating macroalgae in the surface waters under natural conditions. The high growth rate led to shortened time windows for controlling the green tide by employing macroalgae collecting campaigns at the initial sites of the green tide, which was no more than 14 days in the 2016 case.


Asunto(s)
Monitoreo del Ambiente/métodos , Imágenes Satelitales , Algas Marinas/crecimiento & desarrollo , Ulva/crecimiento & desarrollo , China , Océanos y Mares
20.
Sci Total Environ ; 640-641: 807-820, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29879667

RESUMEN

The world's largest macroalgal blooms (MABs) caused by the Ulva prolifera outbreaks have occurred every summer since 2007 in the Southern Yellow Sea, China. Accumulating evidence showed that MABs may deteriorate the regional marine environment and influence the growth of some primary producers such as phytoplankton. In this study, we investigated the spatio-temporal patterns of U. prolifera green tides and chlorophyll-a concentration in the Southern Yellow Sea in 2015 using satellite images obtained from HJ-1 CCD, MODIS, and GOCI. The correlation between the distributions of U. prolifera abundance and chlorophyll-a concentration was analyzed quantitatively by setting up a series of 5 × 5 km experimental grids, and we also discussed the possible mechanisms about the influence of U. prolifera blooms on the other floating microalgae. The results showed that the development of U. prolifera blooms in the Southern Yellow Sea in 2015 could be featured as "appearance - development - outbreak - decline - disappearance", while the concentration of chlorophyll-a showed "increase - sharp decline - slow recovery - stabilization" from April to August. We also found that the concentration of chlorophyll-a had the following relationships with U. prolifera temporally: (1) the concentration of chlorophyll-a increased with the growth of U. prolifera from April to mid-May; (2) the chlorophyll-a concentration decreased sharply with the dramatically increased coverage of U. prolifera in June; and (3) the chlorophyll-a concentration slowly recovered and finally stabilized as U. prolifera decreased in July. Generally, there was a negative correlation between the occurrence of U. prolifera and chlorophyll-a concentration in the Southern Yellow Sea, China. Our results showed that the outbreak of U. prolifera does have a certain impact on the growth and reproduction of planktonic microalgae, and it suggests that U. prolifera blooms have potentially altered the ecological balance in the coastal waters of the Southern Yellow Sea.


Asunto(s)
Clorofila/metabolismo , Monitoreo del Ambiente , Ulva/fisiología , Contaminación del Agua/análisis , China , Eutrofización , Microalgas , Contaminación del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...