Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5282, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489418

RESUMEN

Homeostasis is one of the fundamental concepts in physiology. Despite remarkable progress in our molecular understanding of amino acid transport, metabolism and signaling, it remains unclear by what mechanisms cytosolic amino acid concentrations are maintained. We propose that amino acid transporters are the primary determinants of intracellular amino acid levels. We show that a cell's endowment with amino acid transporters can be deconvoluted experimentally and used this data to computationally simulate amino acid translocation across the plasma membrane. Transport simulation generates cytosolic amino acid concentrations that are close to those observed in vitro. Perturbations of the system are replicated in silico and can be applied to systems where only transcriptomic data are available. This work explains amino acid homeostasis at the systems-level, through a combination of secondary active transporters, functionally acting as loaders, harmonizers and controller transporters to generate a stable equilibrium of all amino acid concentrations.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Homeostasis/genética , Modelos Estadísticos , Neuroglía/metabolismo , Células A549 , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/clasificación , Sistemas de Transporte de Aminoácidos/genética , Animales , Transporte Biológico , Línea Celular Tumoral , Membrana Celular/metabolismo , Simulación por Computador , Expresión Génica , Humanos , Cinética , Metabolómica/métodos , Neuroglía/citología , Oocitos/citología , Oocitos/metabolismo , Xenopus laevis
2.
Pain ; 161(7): 1483-1496, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32068663

RESUMEN

It is consistently reported that in inflammatory arthritis (IA), pain may continue despite well-controlled inflammation, most likely due to interactions between joint pathology and pain pathway alterations. Nervous system alterations have been described, but much remains to be understood about neuronal and central non-neuronal changes in IA. Using a rat model of IA induced by intra-articular complete Freund's adjuvant injection, this study includes a thorough characterization of joint pathology and objectives to identify peripheral innervation changes and alterations in the spinal dorsal horn (DH) that could alter DH excitatory balancing. Male and female rats displayed long-lasting pain-related behavior, but, in agreement with our previous studies, other pathological alterations emerged only at later times. Cartilage vascularization, thinning, and decreased proteoglycan content were not detectable in the ipsilateral cartilage until 4 weeks after complete Freund's adjuvant. Sympathetic and peptidergic nociceptive fibers invaded the ipsilateral cartilage alongside blood vessels, complex innervation changes were observed in the surrounding skin, and ipsilateral nerve growth factor protein expression was increased. In the DH, we examined innervation by peptidergic and nonpeptidergic nociceptors, inhibitory terminal density, the KCl cotransporter KCC2, microgliosis, and astrocytosis. Here, we detected the presence of microgliosis and, interestingly, an apparent loss of inhibitory terminals and decreased expression of KCC2. In conclusion, we found evidence of anatomical, inflammatory, and neuronal alterations in the peripheral and central nervous systems in a model of IA. Together, these suggest that there may be a shift in the balance between incoming and outgoing excitation, and modulatory inhibitory tone in the DH.


Asunto(s)
Artritis , Nociceptores , Animales , Femenino , Adyuvante de Freund/toxicidad , Inflamación/inducido químicamente , Masculino , Dolor/etiología , Ratas , Asta Dorsal de la Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA