Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 216: 109126, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288572

RESUMEN

Rosa rugosa is limited in landscaping applications due to its monotonous color, especially the lack of red-flowered varieties. Comprehensive assessment of petal color diversity in R. rugosa could promote to explore the mechanism of flower color formation. In this study, the variation and diversity of petal coloring of 193 R. rugosa germplasms were assessed by chromatic values (L∗, a∗, and b∗), and then divided into seven clusters belonging to three groups with pinkish-purple (185 individuals), white (6), and red (2) petals, respectively. Total anthocyanin content was the most important factor affecting flower color diversity and red hue formation of R. rugosa petals. There were significant correlations between petal color chromatic indexes and the sum content and the ratio of two major anthocyanin, namely cyanidin 3,5-O-diglucoside (Cy3G5G), peonidin 3,5-O-diglucoside (Pn3G5G). Both high levels of Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G were necessary conditions for red phenotype formation. Five cyanidin up-stream structural genes (RrF3'H1, RrDFR1, RrANS1, RrUF3GT1, RrUF35GT1) and one cyanidin down-stream structural gene (RrCCoAOMT1) were the key indicators which contributed to Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G, respectively. Functional verification showed that overexpression of RrDFR1, combined with silent expression of RrCCoAOMT1, could make R. rugosa petals redder by increasing the levels of Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G. These results provided a robust theoretical basis for further revealing the molecular mechanism of red petals coloration in R. rugosa.

2.
Front Plant Sci ; 13: 1021521, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212326

RESUMEN

Rosa rugosa is a famous Chinese traditional flower with high ornamental value and well environmental adapt ability. The cultivation of new colorful germplasms to improve monotonous flower color could promote its landscape application. However, the mechanism of flower color formation in R. rugosa remains unclear. In this study, combined analyses of the chemical and transcriptome were performed in the R. rugosa germplasms with representative flower colors. Among the identified anthocyanins, cyanidin 3,5-O-diglucoside (Cy3G5G) and peonidin 3,5-O-diglucoside (Pn3G5G) were the two dominant anthocyanins in the petals of R. rugosa. The sum content of Cy3G5G and Pn3G5G was responsible for the petal color intensity, such as pink or purple, light- or dark- red. The ratio of Cy3G5G to Pn3G5G was contributed to the petal color hue, that is, red or pink/purple. Maintaining both high relative and high absolute content of Cy3G5G may be the precondition for forming red-colored petals in R. rugosa. Cyanidin biosynthesis shunt was the dominant pathway for anthocyanin accumulation in R. rugosa, which may be the key reason for the presence of monotonous petal color in R. rugosa, mainly pink/purple. In the upstream pathway of cyanidin biosynthesis, 35 differentially expressed structural genes encoding 12 enzymes co-expressed to regulate the sum contents of Cy3G5G and Pn3G5G, and then determined the color intensity of petals. RrAOMT, involved in the downstream pathway of cyanidin biosynthesis, regulated the ratio of Cy3G5G to Pn3G5G via methylation and then determined the color hue of petals. It was worth mentioning that significantly higher delphinidin-3,5-O-diglucoside content and RrF3'5'H expression were detected from deep purple-red-flowered 8-16 germplasm with somewhat unique and visible blue hue. Three candidate key transcription factors identified by correlation analysis, RrMYB108, RrC1, and RrMYB114, might play critical roles in the control of petal color by regulating the expression of both RrAOMT and other multiple structural genes. These results provided novel insights into anthocyanin accumulation and flower coloration mechanism in R. rugosa, and the candidate key genes involved in anthocyanin biosynthesis could be valuable resources for the breeding of ornamental plants in future.

3.
Mycorrhiza ; 16(2): 137-142, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16292663

RESUMEN

Cathaya argyrophylla, a critically endangered conifer, is found to grow at four isolated areas located in subtropical mountains of China. To examine the involvement and usefulness of mycorrhizas for sustaining the population of this tree, we compared the root system, morphology, and structure of mycorrhizal roots of C. argyrophylla, which were collected from a natural stand and an artificial stand, each grown at a different location. More mycorrhizal roots were found for trees from an artificial stand. The presence of extramatrical mycelium, mantle, and Hartig net revealed that C. argyrophylla formed an ectomycorrhizal association in both sampling sites. Starch granules were found in mycorrhizal roots collected only from a natural stand. The aseptic synthesis of C. argyrophylla and Cenococcum geophilum was established for the first time in vitro. Typical ectomycorrhizas formed on seedlings on RM medium containing 0.1 g/l glucose, 5 weeks after inoculation. By light microscopy, the synthesized mycorrhizas showed a thin mantle from which emanated extramatrical hyphae and highly branched Hartig net. A simple, rapid, and convenient mycorrhiza synthesis system was developed, which facilitates further studies on ectomycorrhizal development of C. argyrophylla.


Asunto(s)
Micorrizas/aislamiento & purificación , Pinaceae/microbiología , China , Pinaceae/química , Pinaceae/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Almidón/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA