Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
FASEB J ; 38(1): e23369, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100642

RESUMEN

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


Asunto(s)
MicroARNs , Ingravidez , Humanos , Ratones , Animales , Músculo Liso Vascular/metabolismo , MicroARNs/metabolismo , Remodelación Vascular/genética , Aorta/metabolismo , Miocitos del Músculo Liso/metabolismo
2.
Heliyon ; 9(11): e22044, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074866

RESUMEN

Hypoxic pulmonary hypertension (HPH) is caused by chronic persistent hypoxia, which leads to the continuous increase of pulmonary artery pressure and pulmonary vascular resistance. In recent years, there has been a substantial increase in research on HPH. To study the trends of HPH research over the last decade, we used WOSCC to search for relevant research on this topic, and dealt with the relevant information using VOSviewer, CiteSpace, and R-tool. Our results show that the number of publications on HPH has generally increased in the last decade, albeit not significantly, while the average number of citations has been declining year by year. Researchers from the USA top the list with 5498 publications, who widely cooperate with researchers from other countries, followed by those from China. Kurt R. Stenmark has an authoritative position in this field, ranking first with 635 citations. American Journal of Physiology Lung Cellular and Molecular Physiology and Pulmonary Circulation have published 151 articles on HPH in the last 10 years, but the former has higher impact factor and article quality. Circulation proved its leadership in this field with 8812 citations. Our findings reveal the trends in HPH research and should provide researchers with plenty of useful information.

3.
iScience ; 26(12): 108556, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125015

RESUMEN

Spaceflight is physically demanding and can negatively affect astronauts' health. It has been shown that the human gut microbiota and cardiac function are affected by spaceflight and simulated spaceflight. This study investigated the effects of the gut microbiota on simulated spaceflight-induced cardiac remodeling using 10° of head-down bed rest (HDBR) in rhesus macaques and 30° of hindlimb unloading (HU) in mice. The gut microbiota, fecal metabolites, and cardiac remodeling were markedly affected by HDBR in macaques and HU in mice, cardiac remodeling in control mice was affected by the gut microbiota of HU mice and that of HU mice was protected by the gut microbiota of control mice, and there was a correlation between cardiac remodeling and the gut microbial-derived metabolite trimethylamine N-oxide. These findings suggest that spaceflight can affect cardiac remodeling by modulating the gut microbiota and fecal metabolites.

4.
Bone Res ; 11(1): 53, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872163

RESUMEN

Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , Huesos/metabolismo , Diferenciación Celular/genética , Ratones Transgénicos , MicroARNs/genética , Osteogénesis/genética , ARN Largo no Codificante/genética
5.
Nutrients ; 15(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299443

RESUMEN

Peppermint essential oil, being natural and safe, with antioxidant and anti-inflammatory properties, has long been a research interest in relieving fatigue and improving exercise performance. However, the related studies report controversial results, and the mechanisms remain unclear. Here we found that inhalation of peppermint essential oil significantly extended the exhaustion time in rats subjected to 2-week weight-bearing swimming training. Sprague-Dawley rats were subjected to a 2-week weight-loaded forced swimming regimen. Prior to each swimming session, the rats were administered peppermint essential oil via inhalation. An exhaustive swimming test was performed at the end of the protocol. Rats treated with essential oil had significantly extended time to exhaustion compared with exercised rats without essential oil treatment. In addition, treated rats also showed reduced oxidative damage induced by endurance exercise. Notably, the rats receiving two-week essential oil inhalation while not subjected to swimming training did not show improved exercise performance. The findings demonstrate that repeated inhalation of peppermint essential oil enhances the effects of endurance training and improves exercise performance partially by preventing oxidative damage.


Asunto(s)
Entrenamiento Aeróbico , Aceites Volátiles , Condicionamiento Físico Animal , Ratas , Animales , Humanos , Ratas Sprague-Dawley , Aceites Volátiles/farmacología , Mentha piperita , Antioxidantes/farmacología , Natación , Resistencia Física
7.
Brain Behav ; 13(9): e3132, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37367435

RESUMEN

INTRODUCTION: Individuals differ in how they judge facial attractiveness. However, little is known about the role of arousal level and gender differences in individuals' facial attractiveness judgments. METHODS: We used resting-state electroencephalogram (EEG) to investigate this issue. A total of 48 men (aged 22.5 ± 3.03 years [mean ± SD], range: 18-30 years) and 27 women (aged 20.3 ± 2.03 years [mean ± SD], range: 18-25 years) participated in the experiment. After the EEG was collected, participants were instructed to complete a facial attractiveness judgment task. Connectome-based predictive modeling was used to predict individual judgment of facial attractiveness. RESULTS: Men with high arousal judged female faces as more attractive (M = 3.85, SE = 0.81) than did men with low arousal (M = 3.33, SE = 0.81) and women (M = 3.24, SE = 1.02). Functional connectivity of the alpha band predicted judgment of female facial attractiveness in men but not in women. After controlling for the age and variability, the prediction effect was still significant. CONCLUSION: Our results provide neural evidence for the enhancement of the judgment of facial attractiveness in men with high arousal levels, which supports the hypothesis that individuals' spontaneous arousal contributes to variations in facial attractiveness preferences.


Asunto(s)
Belleza , Cara , Masculino , Humanos , Femenino , Ojo , Electroencefalografía , Juicio
8.
Commun Biol ; 6(1): 407, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055517

RESUMEN

Mechanical force loading is essential for maintaining bone homeostasis, and unloading exposure can lead to bone loss. Osteoclasts are the only bone resorbing cells and play a crucial role in bone remodeling. The molecular mechanisms underlying mechanical stimulation-induced changes in osteoclast function remain to be fully elucidated. Our previous research found Ca2+-activated Cl- channel Anoctamin 1 (Ano1) was an essential regulator for osteoclast function. Here, we report that Ano1 mediates osteoclast responses to mechanical stimulation. In vitro, osteoclast activities are obviously affected by mechanical stress, which is accompanied by the changes of Ano1 levels, intracellular Cl- concentration and Ca2+ downstream signaling. Ano1 knockout or calcium binding mutants blunts the response of osteoclast to mechanical stimulation. In vivo, Ano1 knockout in osteoclast blunts loading induced osteoclast inhibition and unloading induced bone loss and. These results demonstrate that Ano1 plays an important role in mechanical stimulation induced osteoclast activity changes.


Asunto(s)
Canales de Cloruro , Osteoclastos , Anoctamina-1/genética , Anoctamina-1/metabolismo , Canales de Cloruro/genética , Osteoclastos/metabolismo , Transducción de Señal/fisiología
9.
Redox Biol ; 62: 102693, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030149

RESUMEN

Vascular aging contributes to adverse changes in organ function and is a significant indicator of major cardiac events. Endothelial cells (ECs) participate in aging-provoked coronary vascular pathology. Regular exercise is associated with preservation of arterial function with aging in humans. However, the molecular basis is not well understood. The present study was aimed to determine the effects of exercise on coronary endothelial senescence and whether mitochondrial clearance regulator FUN14 domain containing 1 (FUNDC1)-related mitophagy and mitochondrial homeostasis were involved. In mouse coronary arteries, FUNDC1 levels showed gradually decrease with age. Both FUNDC1 and mitophagy levels in cardiac microvascular endothelial cells (CMECs) were significantly reduced in aged mice and were rescued by exercise training. Exercise also alleviated CMECs senescence as evidenced by senescence associated ß-galactosidase activity and aging markers, prevented endothelial abnormal cell migration, proliferation, and eNOS activation in CMECs from aged mice, and improved endothelium-dependent vasodilation of coronary artery, reduced myocardial neutrophil infiltration and inflammatory cytokines evoked by MI/R, restored angiogenesis and consequently alleviated MI/R injury in aging. Importantly, FUNDC1 deletion abolished the protective roles of exercise and FUNDC1 overexpression in ECs with adeno-associated virus (AAV) reversed endothelial senescence and prevented MI/R injury. Mechanistically, PPARγ played an important role in regulating FUNDC1 expressions in endothelium under exercise-induced laminar shear stress. In conclusion, exercise prevents endothelial senescence in coronary arteries via increasing FUNDC1 in a PPARγ-dependent manner, and subsequently protects aged mice against MI/R injury. These findings highlight FUNDC1-mediated mitophagy as potential therapeutic target that prevents endothelial senescence and myocardial vulnerability.


Asunto(s)
Células Endoteliales , Proteínas Mitocondriales , Animales , Ratones , Senescencia Celular , Células Endoteliales/metabolismo , Endotelio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , PPAR gamma
10.
Life Sci ; 313: 121284, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36529280

RESUMEN

AIMS: Cardiorespiratory fitness (CRF), an important biomarker of human health, is impaired in cold environment compared to thermoneutral condition. The study aimed to investigate the role of metabolome response to acute exercise in regulation of CRF at different ambient temperatures. MAIN METHODS: A total of 27 young adults were recruited, and each subject underwent a cardiopulmonary exercise test (CPET) and a constant load submaximal exercise at both room temperature (25 °C) and cold temperature (0 °C). The serum samples were collected before and immediately after constant load exercise. KEY FINDINGS: Acute cold exposure decreased CRF by 41 %, accompanied by a metabolic shift to anaerobic respiration. It also decreased VO2 and increased respiratory quotient during constant load exercise. Metabolome profiling revealed that acute exercise reprogrammed serum metabolome in an ambient temperature-dependent manner. Specifically, exercise increased a cluster of fatty acids during cold exposure, possibly due to impaired fatty acid oxidation. The correlations between metabolite responses to acute exercise and exercise parameters were analyzed using partial least squares regression and machine learning, revealing that metabolite responses to acute exercise were highly correlated with exercise parameters and predictive of CRF. Among the contributors, tryptophan and its metabolites stood out as important ones. SIGNIFICANCE: These results suggested that the metabolite responses to acute submaximal exercise unmasks the exercise performance at different ambient temperatures, highlighting the role of metabolite orchestration in the physiological regulation of CRF.


Asunto(s)
Capacidad Cardiovascular , Adulto Joven , Humanos , Temperatura , Ejercicio Físico/fisiología , Prueba de Esfuerzo/métodos , Frío , Consumo de Oxígeno/fisiología
11.
Front Psychol ; 13: 1003719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248489

RESUMEN

Chronic stress impairs working memory (WM), but few studies have explored the protective factors of the impairment. We aimed to investigate the effect of self-awareness on WM processing in people under chronic stress. Participants under chronic stress completed an n-back task after a self-awareness priming paradigm during which electroencephalograms were recorded. The behavioral results showed that participants whose self-awareness was primed reacted faster and more accurately than the controls. Event-related potentials (ERPs) revealed the following (1) P2 was more positive in the self-awareness group than in the controls, indicating that self-awareness enhanced allocation of attention resources at the encoding stage. (2) N2 was attenuated in the self-awareness group compared with the controls, indicating that smaller attention control efforts were required to complete WM tasks adequately after self-awareness priming; and (3) enhanced late positive potential (LPP) was evoked in the self-awareness group compared with the controls, suggesting self-awareness enabled participants to focus attention resources on the information at the maintenance stage. Critically, mediational analyses showed that LPP mediated the relationship between self-awareness and WM response times. This result suggests that the fact that participants whose self-awareness was primed were able to achieve better behavioral performances may be attributed to their mobilization of sustained attention resources at the maintenance stage. In summary, self-awareness exerted a protective effect on WM in those under chronic stress, which may be due to the enhancements in the allocation and mobilization of attention. These results could be used to develop more specific coping strategies for people under chronic stress.

12.
Oxid Med Cell Longev ; 2022: 5124553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120592

RESUMEN

Iron is indispensable in numerous biologic processes, but abnormal iron regulation and accumulation is related to pathological processes in cardiovascular diseases. However, the underlying mechanisms still need to be further explored. Iron plays a key role in metal-catalyzed oxidative reactions that generate reactive oxygen species (ROS), which can cause oxidative stress. As the center for oxygen and iron utilization, mitochondria are vulnerable to damage from iron-induced oxidative stress and participate in processes involved in iron-related damage in cardiovascular disease, although the mechanism remains unclear. In this review, the pathological roles of iron-related oxidative stress in cardiovascular diseases are summarized, and the potential effects and mechanisms of mitochondrial iron homeostasis and dysfunction in these diseases are especially highlighted.


Asunto(s)
Productos Biológicos , Enfermedades Cardiovasculares , Productos Biológicos/farmacología , Enfermedades Cardiovasculares/metabolismo , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Hypertension ; 79(10): e116-e128, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35950516

RESUMEN

BACKGROUND: Regular exercise has been recommended clinically for all individuals to protect against hypertension but the underlying mechanisms are not fully elucidated. We recently found a significant mitochondrial fragmentation in the vascular endothelium of hypertensive human subjects. In this study, we investigated whether exercise could restore endothelial mitochondrial dynamics and thus improve vascular function in hypertension. METHODS: Vascular endothelial mitochondrial morphological alterations were examined in patients with hypertension and hypertensive animal models. Furthermore, swimming exercise-induced endothelial mitochondrial dynamics and vascular function changes were investigated in spontaneously hypertensive rats (SHRs). RESULTS: Mitochondrial fragmentation with an elevated mitochondrial fission mediator Drp1 (dynamin-related protein-1) was observed in the mesenteric artery endothelium from hypertensive patients. A similar mitochondrial fragmentation with increased Drp1 expression were exhibited in the aortic endothelium of angiotensin II-induced hypertensive mice and SHRs. Interestingly, swimming exercise significantly reduced vascular Drp1 expression and alleviated endothelial mitochondrial fragmentation, thus improving blood pressure in SHRs. In cultured endothelial cells, angiotensin II exposure induced Drp1 upregulation, mitochondrial fragmentation and dysfunction, and reduced nitric oxide production, which was blunted by Drp1 genetic reduction or its inhibitor Mdivi-1. Mdivi-1 administration also ameliorated endothelial mitochondrial fragmentation, vascular dysfunction and blood pressure elevation in SHRs while swimming exercise plus Mdivi-1 treatment provided no additional benefits, suggesting that Drp1 inhibition may partially contribute to swimming exercise-conferred anti-hypertensive effects. CONCLUSIONS: These findings suggest that swimming exercise alleviates endothelial mitochondrial fragmentation via inhibiting Drp1, which may contribute to exercise-induced improvement of vascular function and blood pressure in hypertension.


Asunto(s)
Células Endoteliales , Hipertensión , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Dinaminas , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Humanos , Hipertensión/metabolismo , Hipertensión/terapia , Ratones , Dinámicas Mitocondriales , Ratas , Natación
14.
Front Bioeng Biotechnol ; 10: 850303, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528209

RESUMEN

As hematopoietic stem cells can differentiate into all hematopoietic lineages, mitigating the damage to hematopoietic stem cells is important for recovery from overdose radiation injury. Cells in bone marrow microenvironment are essential for hematopoietic stem cells maintenance and protection, and many of the paracrine mediators have been discovered in shaping hematopoietic function. Several recent reports support exosomes as effective regulators of hematopoietic stem cells, but the role of osteoblast derived exosomes in hematopoietic stem cells protection is less understood. Here, we investigated that osteoblast derived exosomes could alleviate radiation damage to hematopoietic stem cells. We show that intravenous injection of osteoblast derived exosomes promoted WBC, lymphocyte, monocyte and hematopoietic stem cells recovery after irradiation significantly. By sequencing osteoblast derived exosomes derived miRNAs and verified in vitro, we identified miR-21 is involved in hematopoietic stem cells protection via targeting PDCD4. Collectively, our data demonstrate that osteoblast derived exosomes derived miR-21 is a resultful regulator to radio-protection of hematopoietic stem cells and provide a new strategy for reducing radiation induced hematopoietic injury.

15.
Bone Res ; 10(1): 18, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210394

RESUMEN

Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength, whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) play key roles in diverse biological, physiological and pathological contexts. However, the roles of lncRNAs in mechanotransduction and their relationships with bone formation remain unknown. In this study, we screened mechanosensing lncRNAs in osteoblasts and identified Neat1, the most clearly decreased lncRNA under simulated microgravity. Of note, not only Neat1 expression but also the specific paraspeckle structure formed by Neat1 was sensitive to different mechanical stimulations, which were closely associated with osteoblast function. Paraspeckles exhibited small punctate aggregates under simulated microgravity and elongated prolate or larger irregular structures under mechanical loading. Neat1 knockout mice displayed disrupted bone formation, impaired bone structure and strength, and reduced bone mass. Neat1 deficiency in osteoblasts reduced the response of osteoblasts to mechanical stimulation. In vivo, Neat1 knockout in mice weakened the bone phenotypes in response to mechanical loading and hindlimb unloading stimulation. Mechanistically, paraspeckles promoted nuclear retention of E3 ubiquitin ligase Smurf1 mRNA and downregulation of their translation, thus inhibiting ubiquitination-mediated degradation of the osteoblast master transcription factor Runx2, a Smurf1 target. Our study revealed that Neat1 plays an essential role in osteoblast function under mechanical stimulation, which provides a paradigm for the function of the lncRNA-assembled structure in response to mechanical stimulation and offers a therapeutic strategy for long-term spaceflight- or bedrest-induced bone loss and age-related osteoporosis.

16.
Front Cell Dev Biol ; 9: 739944, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733849

RESUMEN

Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis. However, the role of WWP1 in cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether WWP1 was also involved in the regulation of cardiac remodeling caused by microgravity. Firstly, we detected the expression of WWP1 and DVL2 in the heart from mice and monkeys after simulated microgravity using western blotting and immunohistochemistry. Secondly, WWP1 knockout (KO) and wild-type (WT) mice were subjected to tail suspension (TS) to simulate microgravity effect. We assessed the cardiac remodeling in morphology and function through a histological analysis and echocardiography. Finally, we detected the phosphorylation levels of CaMKII and HDAC4 in the hearts from WT and WWP1 KO mice after TS. The results revealed the increased expression of WWP1 and DVL2 in the hearts both from mice and monkeys after simulated microgravity. WWP1 deficiency alleviated simulated microgravity-induced cardiac atrophy and function decline. The histological analysis demonstrated WWP1 KO inhibited the decreases in the size of individual cardiomyocytes of mice after tail suspension. WWP1 KO can inhibit the activation of the DVL2/CaMKII/HDAC4 pathway in the hearts of mice induced by simulated microgravity. These results demonstrated WWP1 as a potential therapeutic target for cardiac remodeling and function decline induced by simulated microgravity.

17.
FASEB J ; 35(11): e21947, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34637552

RESUMEN

Vascular remodeling is a prominent trait during the development of hypertension, attributable to the phenotypic transition of vascular smooth muscle cells (VSMCs). Increasing studies demonstrate that microRNA plays an important role in this process. Here, we surprisingly found that smooth muscle cell-specific miR-214 knockout (miR-214 cKO) significantly alleviates angiotensin II (Ang II)-induced hypertension, which has the same effect as that of miR-214 global knockout mice in response to Ang II stimulation. Under the treatment of Ang II, miR-214 cKO mice exhibit substantially reduced systolic blood pressure. The vascular medial thickness and area in miR-214 cKO blood vessels were obviously reduced, the expression of collagen I and proinflammatory factors were also inhibited. VSMC-specific deletion of miR-214 blunts the response of blood vessels to the stimulation of endothelium-dependent and -independent vasorelaxation and phenylephrine and 5-HT induced vasocontraction. In vitro, Ang II-induced VSMC proliferation, migration, contraction, hypertrophy, and stiffness were all repressed with miR-214 KO in VSMC. To further explore the mechanism of miR-214 in the regulation of the VSMC function, it is very interesting to find that the TGF-ß signaling pathway is mostly enriched in miR-214 KO VSMC. Smad7, the potent negative regulator of the TGF-ß/Smad pathway, is identified to be the target of miR-214 in VSMC. By which, miR-214 KO sharply enhances Smad7 levels and decreases the phosphorylation of Smad3, and accordingly alleviates the downstream gene expression. Further, Ang II-induced hypertension and vascular dysfunction were reversed by antagomir-214. These results indicate that miR-214 in VSMC established a crosstalk between Ang II-induced AT1R signaling and TGF-ß induced TßRI /Smad signaling, by which it exerts a pivotal role in vascular remodeling and hypertension and imply that miR-214 has the potential as a therapeutic target for the treatment of hypertension.


Asunto(s)
Angiotensina II/farmacología , Técnicas de Inactivación de Genes/métodos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/genética , Proteína smad7/metabolismo , Regulación hacia Arriba/genética , Animales , Presión Sanguínea/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Remodelación Vascular/genética
18.
Eur Heart J ; 42(36): 3786-3799, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34347073

RESUMEN

AIMS: 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown. METHODS AND RESULTS: Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes. We generated cardiac-specific Ckip-1 3' UTR overexpression mice under wild type and casein kinase 2 interacting protein-1 (CKIP-1) knockout background. Cardiac remodelling was assessed by histological, echocardiography, and molecular analyses at 4 weeks after transverse aortic constriction (TAC) surgery. The results showed that cardiac Ckip-1 3' UTR significantly inhibited TAC-induced cardiac hypertrophy independent of CKIP-1 protein. To determine the mechanism of Ckip-1 3' UTR in cardiac hypertrophy, we performed transcriptome and metabolomics analyses, RNA immunoprecipitation, biotin-based RNA pull-down, and reporter gene assays. We found that Ckip-1 3' UTR promoted fatty acid metabolism through AMPK-PPARα-CPT1b axis, leading to its protection against pathological cardiac hypertrophy. Moreover, Ckip-1 3' UTR RNA therapy using adeno-associated virus obviously alleviates cardiac hypertrophy and improves heart function. CONCLUSIONS: These findings disclose that Ckip-1 3' UTR inhibits cardiac hypertrophy independently of its cognate protein. Ckip-1 3' UTR is an effective RNA-based therapy tool for treating cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Regiones no Traducidas 3'/genética , Animales , Cardiomegalia/genética , Cardiomegalia/prevención & control , Proteínas Portadoras , Insuficiencia Cardíaca/genética , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos
19.
Front Physiol ; 12: 672351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220534

RESUMEN

Exposure to acute transition from negative (-Gz) to positive (+ Gz) gravity significantly impairs cerebral perfusion in pilots of high-performance aircraft during push-pull maneuver. This push-pull effect may raise the risk for loss of vision or consciousness. The aim of the present study was to explore effective countermeasures against cerebral hypoperfusion induced by the push-pull effect. Twenty healthy young volunteers (male, 21 ± 1 year old) were tested during the simulated push-pull maneuver by tilting. A thigh cuff (TC) pressure of 200 mmHg was applied before and during simulated push-pull maneuver (-0.87 to + 1.00 Gz). Beat-to-beat cerebral and systemic hemodynamics were measured continuously. During rapid -Gz to + Gz transition, mean cerebral blood flow velocity (CBFV) was decreased, but to a lesser extent, in the TC bout compared with the control bout (-3.1 ± 4.9 vs. -7.8 ± 4.4 cm/s, P < 0.001). Similarly, brain-level mean blood pressure showed smaller reduction in the TC bout than in the control bout (-46 ± 12 vs. -61 ± 13 mmHg, P < 0.001). The systolic CBFV was lower but diastolic CBFV was higher in the TC bout. The systemic blood pressure response was blunted in the TC bout, along with similar heart rate increase, smaller decrease, and earlier recovery of total peripheral resistance index than control during the gravitational transition. These data demonstrated that restricting thigh blood flow can effectively mitigate the transient cerebral hypoperfusion induced by rapid shift from -Gz to + Gz, characterized by remarkable improvement of cerebral diastolic flow.

20.
Circulation ; 144(9): 694-711, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34139860

RESUMEN

BACKGROUND: Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined. METHODS: To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction. RESULTS: The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload-induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure. CONCLUSIONS: We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.


Asunto(s)
Cardiomegalia/metabolismo , Proteínas Dishevelled/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Biomarcadores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/diagnóstico , Cardiomegalia/etiología , Cardiomegalia/prevención & control , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/prevención & control , Histona Desacetilasas/metabolismo , Humanos , Inmunohistoquímica , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Estabilidad Proteica , Proteínas Represoras/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...