Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
Sci Total Environ ; : 175602, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39155006

RESUMEN

To protect agro-systems and food security, study on the effect of microplastics and heavy metals on edible plants is of great significance. Existing studies mostly used virgin microplastics to evaluate their effects on plants, effects of naturally aged microplastics and their combined effects with heavy metals are rarely explored. In this study, single and combined effect of polyethylene microplastics (PE, both virgin and naturally aged) and cadmium (Cd) on pakchoi under seedling and mature stages were analyzed from perspectives of growth inhibition, oxidative damage, nutrition content and soil enzyme activities. Results showed that inhibiting effects of naturally aged PE (PEa) on the growth of pakchoi were stronger than virgin PE (PEv), whereas co-contamination of PEa and Cd was less toxic than that of PEv and Cd. The co-contamination of PE and Cd could inhibit pakchoi dry biomass by over 85 %. Both single and combined contamination of PE and Cd promoted soil fluorescein diacetate hydrolase (FDA) activities, which were 1.11 to 2.04 times of that in control group. Soluble sugar contents under co-contamination of PEa and Cd were 14 % to 22 % higher than those in control group. PEa and PEv showed different effects on oxidative damage of pakchoi. Compared with PEv, catalase (CAT) activities were more sensitive with PEa, whereas PEa had lower effect on superoxide dismutase (SOD) activities. The response of pakchoi to PE and Cd changed with growth stage. Chlorophyll contents in pakchoi under seedling stage were generally higher than those under mature stage. For Cd contaminated soils, PE benefited pakchoi growth under seedling stage, i.e. antagonistic effect between Cd and PE but hindered their growth under mature stage, i.e. synergistic effect. The results unraveled here emphasized PE, especially PEa, could trigger negative effects on agro-systems, whereas PE could be beneficial for heavy metal contaminated agro-systems under specific situations.

2.
Front Psychol ; 15: 1414215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108436

RESUMEN

Objective: Examining the current situation of test anxiety among first year senior high school students in Yanji City and investigating the factors that contribute to exam anxiety. Methods: Using cluster sampling, a survey was conducted on 1,550 first-year high school students from three high schools in Yanji City in April-May 2023. The survey utilized general information questionnaires, the Minnesota Multiphasic Personality Inventory (MMPI), and the Self-Rating Anxiety Scale (SAS). Logistic regression analysis was used to determine the influencing factors of test anxiety. Results: A total of 1,550 first-year high school students were included in the analysis, with a test anxiety occurrence rate of 79.8%. Test anxiety exhibited statistical differences among different genders, ethnicities, family economic levels, frequency of communication with parents, and relationships with parents (with results of 53.44, 10.42, 17.31, 20.42, 31.95, all p < 0.05). Scores of hypochondriasis (Hs), depression (D), psychasthenia (Pt), paranoia (Pa), psychopathic deviate (Pd), schizophrenia (Sc), and hypomania (Ma) in the 10 clinical personality scales were significantly positively correlated. Logistic regression analysis revealed that gender, ethnicity, frequency of communication with parents, and scores of hypochondriasis (Hs), depression (D), psychasthenia (Pt), paranoia (Pa), and hypomania (Ma) in the 10 clinical personality scales were the main influencing factors for test anxiety in first-year high school students (all p < 0.05). Conclusion: The test anxiety level of high school students in Yanji City is relatively high, with variations in test anxiety levels among students of different genders, ethnicities, parental communication styles, and deviant personality traits. It is recommended that schools and teachers should give more consideration to test anxiety among high school students, particularly targeting those with potential risk factors. Parents should also be more attentive to their children's development and advancement, and improve their family education principles.

3.
Int J Surg ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017708

RESUMEN

BACKGROUND: The optimal duration for surgical antibiotic prophylaxis (SAP) for preventing surgical site infection (SSI) in orthopaedic surgeries remains poorly supported by high-level evidence. This study aimed to assess the association between SAP duration and the occurrence of SSI within one year postoperatively. METHODS: This prospective cohort study was based on the database from Surgical Site Infection Surveillance and Improvement Project (SISIP) of a tertiary orthopaedic university hospital from October 2014 to December 2020. The main outcome was SSI, defined according to the CDC/NHSN criteria, determined by review of index hospitalization medical records, microbiology laboratory reports, and readmission records for SSI treatment within one-year after discharge. Adjusted Generalized additive models (GAMs) were performed to assess the relationships between SAP duration and SSI, determined the cut-off point of SAP duration, and estimate the relative contribution of each included variable, across the overall cohort and the three subgroups (open fracture, closed fracture, and non-traumatic group). Multivariable logistic regression models were used to estimate the association between prolonging SAP duration based on the cut-off point and SSI. RESULTS: There were 37,046 patients (55.1% male) included, with the overall SSI incidence of 2.35% (871/37,046). In adjusted GAMs, no statistically significant relationships were observed in overall cohort and open or closed group (P>0.05), but a nonlinear relationship was exhibited non-traumatic group (P=0.03); the cut-off point were 2.4 days for overall cohort and 3.6 days (open), 2.6 days (closed), 1.1 days (non-trauma) for three subgroups. In adjusted logistic regression, prolonging SAP duration did not demonstrate a statistically significant protective effect in overall cohort (aOR=0.868; 95% CI, 0.746-1.011) and three groups (open: aOR=0.867; 95% CI, 0.668-1.124; closed: aOR=0.925; 95% CI, 0.754-1.135; non-trauma: aOR=1.184; 95% CI, 0.832-1.683). The relative contribution ranks of SAP duration were 21st overall among 34 factors, 14th for open fractures, 28th for closed fractures, and 3rd for non-traumatic group among 33 factors. CONCLUSION: Prolonged postoperative SAP duration has no protective effect against SSI in orthopaedic surgery. Our findings support current guidelines against the practice of continuing SAP postoperatively.

4.
Huan Jing Ke Xue ; 45(7): 3930-3940, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022941

RESUMEN

N-nitrosamines are a type of nitrogen-containing organic pollutant with high carcinogenicity and mutagenicity. In the main drinking water sources of small and medium-sized towns in China, the contamination levels of N-nitrosamines remain unclear. In addition, there is still lack of research on the concentration of N-nitrosamines and their precursors in tributary rivers. In this study, eight N-nitrosamines and their formation potentials (FPs) were investigated in the Qingjiang River, which is a primary tributary of the Yangtze River. The sewage discharge sites were also monitored, and the environmental influencing factors, carcinogenic and ecological risks caused by N-nitrosamines, and their precursors were evaluated. The results showed that six N-nitrosamines were detected in water samples of the Qingjiang River, among which NDMA [(10 ±15) ng·L-1], NDEA [(9.3 ±9.3) ng·L-1], and NDBA [(14 ±7.8) ng·L-1] were the dominant N-nitrosamines, whereas seven N-nitrosamines were detected in chloraminated water samples, among which NDMA-FP [(46 ±21) ng·L-1], NDEA-FP [(26 ±8.3) ng·L-1], and NDBA-FP [(22 ±13) ng·L-1] were the dominant N-nitrosamine FPs. The concentrations of N-nitrosamines in the middle reaches of the Qingjiang River were higher than those in the upper and lower reaches. Furthermore, the concentrations of N-nitrosamines in the sample sites of sewage discharge and tributaries were significantly higher than those in other sampling sites. The monitoring results at the direct sewage discharge points indicated that the main source of N-nitrosamines in river water was the sewage carrying N-nitrosamines and their precursors. In addition, the concentrations of the three dominant N-nitrosamines including NDMA, NDBA, and NDEA were positively correlated with each other, mainly because of their similar sewage sources. The average carcinogenic risk to residents due to N-nitrosamine in drinking water sources was 2.4×10-5, indicating a potential carcinogenic risk. Moreover, due to the high concentrations of N-nitrosamine formation potentials in the Qingjiang River, the carcinogenic risk of drinking water may be even higher. The ecological risk assessment showed that the ecological risk quotient values of N-nitrosamines in the Qingjiang River watershed were lower than 0.002, which was negligible.


Asunto(s)
Monitoreo del Ambiente , Nitrosaminas , Contaminantes Químicos del Agua , Contaminación Química del Agua , Nitrosaminas/análisis , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , China , Exposición a Riesgos Ambientales/estadística & datos numéricos , Agua Potable/análisis , Ríos
5.
Artículo en Inglés | MEDLINE | ID: mdl-39072851

RESUMEN

Heparinases, including heparinases I-III (HepI, HepII, and HepIII, respectively), are important tools for producing low-molecular-weight heparin, an improved anticoagulant. The poor thermostability of heparinases significantly hinders their industrial and laboratory applications. To improve the thermostability of heparinases, we applied a rigid linker (EAAAK)5 (R) and a flexible linker (GGGGS)5 (F) to fuse maltose-binding protein (MBP) and HepI, HepII, and HepIII from Pedobacter heparinus, replacing the original linker from the plasmid pMAL-c2X. Compared with their parental fusion protein, MBP-fused HepIs, HepIIs, and HepIIIs with linkers (EAAAK)5 or (GGGGS)5 all displayed enhanced thermostability (half-lives at 30°C: 242%-464%). MBP-fused HepIs and HepIIs exhibited higher specific activity (127%-324%), whereas MBP-fused HepIIIs displayed activity similar to that of their parental fusion protein. Kinetics analysis revealed that MBP-fused HepIIs showed a significantly decreased affinity toward heparin with increased Km values (397%-480%) after the linker replacement, whereas the substrate affinity did not change significantly for MBP-fused HepIs and HepIIIs. Furthermore, it preliminarily appeared that the depolymerization mechanism of these fusion proteins may not change after linker replacement. These findings suggest the superior enzymatic properties of MBP-fused heparinases with suitable linker designs and their potential for the bioproduction of low-molecular-weight heparin.

6.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38979210

RESUMEN

Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression. TrkA inhibition in transgenic mice led to significant reductions in sarcoma-associated sensory innervation and vascularization, tumor growth and metastasis, and prolonged overall survival. Single-cell transcriptomics revealed that sarcoma denervation was associated with phenotypic alterations in both OS tumor cells and cells within the tumor microenvironment, and with reduced calcitonin gene-related peptide (CGRP) and vascular endothelial growth factor (VEGF) signaling. Multimodal and multi-omics analyses of human OS bone samples and human dorsal root ganglia neurons further implicated peripheral innervation and neurotrophin signaling in OS tumor biology. In order to curb tumor-associated axonal ingrowth, we next leveraged FDA-approved bupivacaine liposomes leading to significant reductions in sarcoma growth, vascularity, as well as alleviation of pain. In sum, TrkA-expressing peripheral neurons positively regulate key aspects of OS progression and sensory neural inhibition appears to disrupt calcitonin receptor signaling (CALCR) and VEGF signaling within the sarcoma microenvironment leading to significantly reduced tumor growth and improved survival. These data suggest that interventions to prevent pathological innervation of osteosarcoma represent a novel adjunctive therapy to improve clinical outcomes and survival.

7.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013920

RESUMEN

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Asunto(s)
Metanol , Methylobacterium , Methylobacterium/metabolismo , Methylobacterium/genética , Methylobacterium/enzimología , Methylobacterium/crecimiento & desarrollo , Metanol/metabolismo , Simbiosis , Mutación , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hojas de la Planta/microbiología , Hojas de la Planta/crecimiento & desarrollo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/crecimiento & desarrollo , Methylobacterium extorquens/enzimología , Desarrollo de la Planta , Microbiota/genética , Biomasa
8.
Stem Cells Transl Med ; 13(8): 791-802, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38986535

RESUMEN

Platelet-derived growth factor receptor α (PDGFRα) is often considered as a general marker of mesenchymal cells and fibroblasts, but also shows expression in a portion of osteoprogenitor cells. Within the skeleton, Pdgfrα+ mesenchymal cells have been identified in bone marrow and periosteum of long bones, where they play a crucial role in participating in fracture repair. A similar examination of Pdgfrα+ cells in calvarial bone healing has not been examined. Here, we utilize Pdgfrα-CreERTM;mT/mG reporter animals to examine the contribution of Pdgfrα+ mesenchymal cells to calvarial bone repair through histology and single-cell RNA sequencing (scRNA-Seq). Results showed that Pdgfrα+ mesenchymal cells are present in several cell clusters by scRNA-Seq, and by histology a dramatic increase in Pdgfrα+ cells populated the defect site at early timepoints to give rise to healed bone tissue overtime. Notably, diphtheria toxin-mediated ablation of Pdgfrα reporter+ cells resulted in significantly impaired calvarial bone healing. Our findings suggest that Pdgfrα-expressing cells within the calvarial niche play a critical role in the process of calvarial bone repair.


Asunto(s)
Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Cráneo , Animales , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ratones , Cráneo/metabolismo , Cráneo/lesiones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Regeneración Ósea/fisiología
9.
Sci Adv ; 10(30): eado7438, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39047093

RESUMEN

Designing highly efficient orally administrated nanotherapeutics with specific inflammatory site-targeting functions in the gastrointestinal tract for ulcerative colitis (UC) management is a noteworthy challenge. Here, we focused on exploring a specific targeting oral nanotherapy, serving as "one stone," for the directed localization of inflammation and the regulation of redox homeostasis, thereby achieving effects against "two birds" for UC treatment. Our designed nanotherapeutic agent OPNs@LMWH (oxidation-sensitive ε-polylysine nanoparticles at low-molecular weight heparin) exhibited specific active targeting effects and therapeutic efficacy simultaneously. Our results indicate that OPNs@LMWH had high integrin αM-mediated immune cellular uptake efficiency and preferentially accumulated in inflamed tissues. We also confirmed its effectiveness in the treatment experiment of colitis in mice by ameliorating oxidative stress and inhibiting the activation of inflammation-associated signaling pathways while simultaneously bolstering the protective mechanisms of the colonic epithelium. Overall, these findings underscore the compelling dual functionalities of OPNs@LMWH, which enable effective oral delivery to inflamed sites, thereby facilitating precise UC management.


Asunto(s)
Colitis Ulcerosa , Homeostasis , Integrinas , Nanopartículas , Oxidación-Reducción , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Nanopartículas/química , Administración Oral , Integrinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos
10.
Saudi Pharm J ; 32(7): 102124, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38933713

RESUMEN

Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.

11.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895367

RESUMEN

The profound pain accompanying bone fracture is mediated by somatosensory neurons, which also appear to be required to initiate bone regeneration following fracture. Surprisingly, the precise neuroanatomical circuitry mediating skeletal nociception and regeneration remains incompletely understood. Here, we characterized somatosensory dorsal root ganglia (DRG) afferent neurons innervating murine long bones before and after experimental long bone fracture in mice. Retrograde labeling of DRG neurons by an adeno-associated virus with peripheral nerve tropism showed AAV-tdT signal. Single cell transcriptomic profiling of 6,648 DRG neurons showed highest labeling across CGRP+ neuron clusters (6.9-17.2%) belonging to unmyelinated C fibers, thinly myelinated Aδ fibers and Aß-Field LTMR (9.2%). Gene expression profiles of retrograde labeled DRG neurons over multiple timepoints following experimental stress fracture revealed dynamic changes in gene expression corresponding to the acute inflammatory ( S100a8 , S100a9 ) and mechanical force ( Piezo2 ). Reparative phase after fracture included morphogens such as Tgfb1, Fgf9 and Fgf18 . Two methods to surgically or genetically denervate fractured bones were used in combination with scRNA-seq to implicate defective mesenchymal cell proliferation and osteodifferentiation as underlying the poor bone repair capacity in the presence of attenuated innervation. Finally, multi-tissue scRNA-seq and interactome analyses implicated neuron-derived FGF9 as a potent regulator of fracture repair, a finding compatible with in vitro assessments of neuron-to-skeletal mesenchyme interactions.

12.
ACS Synth Biol ; 13(6): 1893-1905, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38825826

RESUMEN

Gas-fermenting Clostridium species hold tremendous promise for one-carbon biomanufacturing. To unlock their full potential, it is crucial to unravel and optimize the intricate regulatory networks that govern these organisms; however, this aspect is currently underexplored. In this study, we employed pooled CRISPR interference (CRISPRi) screening to uncover a wide range of functional transcription factors (TFs) in Clostridium ljungdahlii, a representative species of gas-fermenting Clostridium, with a special focus on TFs associated with the utilization of carbon resources. Among the 425 TF candidates, we identified 75 and 68 TF genes affecting the heterotrophic and autotrophic growth of C. ljungdahlii, respectively. We focused our attention on two of the screened TFs, NrdR and DeoR, and revealed their pivotal roles in the regulation of deoxyribonucleoside triphosphates (dNTPs) supply, carbon fixation, and product synthesis in C. ljungdahlii, thereby influencing the strain performance in gas fermentation. Based on this, we proceeded to optimize the expression of deoR in C. ljungdahlii by adjusting its promoter strength, leading to an improved growth rate and ethanol synthesis of C. ljungdahlii when utilizing syngas. This study highlights the effectiveness of pooled CRISPRi screening in gas-fermenting Clostridium species, expanding the horizons for functional genomic research in these industrially important bacteria.


Asunto(s)
Sistemas CRISPR-Cas , Clostridium , Fermentación , Factores de Transcripción , Clostridium/genética , Clostridium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regiones Promotoras Genéticas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Metabólica/métodos , Gases/metabolismo
13.
Cell Death Dis ; 15(6): 420, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886383

RESUMEN

The regeneration of the mammalian skeleton's craniofacial bones necessitates the action of intrinsic and extrinsic inductive factors from multiple cell types, which function hierarchically and temporally to control the differentiation of osteogenic progenitors. Single-cell transcriptomics of developing mouse calvarial suture recently identified a suture mesenchymal progenitor population with previously unappreciated tendon- or ligament-associated gene expression profile. Here, we developed a Mohawk homeobox (MkxCG; R26RtdT) reporter mouse and demonstrated that this reporter identifies an adult calvarial suture resident cell population that gives rise to calvarial osteoblasts and osteocytes during homeostatic conditions. Single-cell RNA sequencing (scRNA-Seq) data reveal that Mkx+ suture cells display a progenitor-like phenotype with expression of teno-ligamentous genes. Bone injury with Mkx+ cell ablation showed delayed bone healing. Remarkably, Mkx gene played a critical role as an osteo-inhibitory factor in calvarial suture cells, as knockdown or knockout resulted in increased osteogenic differentiation. Localized deletion of Mkx in vivo also resulted in robustly increased calvarial defect repair. We further showed that mechanical stretch dynamically regulates Mkx expression, in turn regulating calvarial cell osteogenesis. Together, we define Mkx+ cells within the suture mesenchyme as a progenitor population for adult craniofacial bone repair, and Mkx acts as a mechanoresponsive gene to prevent osteogenic differentiation within the stem cell niche.


Asunto(s)
Diferenciación Celular , Proteínas de Homeodominio , Osteogénesis , Cráneo , Animales , Ratones , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Osteogénesis/genética , Cráneo/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citología , Suturas Craneales/metabolismo , Células Madre/metabolismo , Células Madre/citología , Biomarcadores/metabolismo
14.
Zhen Ci Yan Jiu ; 49(6): 558-565, 2024 Jun 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38897799

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Neiguan"(PC6) on cardiac function, cardiac morphology and transient receptor potential channel (TRPC) protein expressions in myocardial tissue of mice with myocardial hypertrophy, so as to explore its mechanisms underlying improvement of myocardial hypertrophy. METHODS: Forty-five male C57BL/6 mice were randomly divided into control, model and EA groups (15 mice/group). The myocardial hypertrophy model was established by subcutaneous injection of isoproterenol hydrochloride (15 mg·kg-1·d-1) for 14 days. The mice of the control group received subcutaneous injection of same amount of normal saline. The mice of the EA group received EA stimulation (frequency of 2 Hz, intensity of 1 mA) of bilateral PC6 for 20 min each time, once a day for 14 consecutive days. After the intervention, the body weight, tibia length and heart weight were measured. The left ventricular ejection fraction (EF), fractional shortening index (FS), left ventricular end-systolic volume (LVEV), left ventricular end-systolic internal diameter (LVID) and left ventricular posterior wall thickness (LVPW) were measured by using echocardiography for evaluating the cardiac function. The mean number and surface area of myocardial cells was detected by wheat germ agglutinin (WGA) staining, and changes of the cardiac morphology were observed under light microscopy after HE staining. The expression levels of TRPC1, TRPC3, TRPC4 and TRPC6 (TRPC1/3/4/6) in the myocardial tissue were detected by real-time quantitative PCR (qPCR) and Western blot, separately. RESULTS: Compared with the control group, the heart-body weight ratio(P<0.05) and heart-weight-to-tibia-length ratio (P<0.01), LVEV and LVID levels, the relative surface area, left ventricular area ratio, and the expression levels of cardiac TRPC1/3/4/6 were significantly increased (P<0.01, P<0.05), while the EF, FS, LVPW, number of cardiomyocytes, and the left ventricular posterior wall ratio were obviously decreased (P<0.01, P<0.05) in the model group. In comparison with the model group, the heart/body weight ratio, heart-weight-to-tibia-length ratio, LVEV and LVID levels, relative surface area, left ventricular area ratio, and the expression levels of cardiac TRPC1/3/4/6 were significantly decreased (P<0.01, P<0.05), while the EF, FS, LVPW, number of cardiomyocytes and left ventricular posterior wall ratio were significantly increased (P<0.01, P<0.05) in the EA group. H.E. staining showed disordered arrangement of cardiomyocytes and obvious myocardial interstitial inflammatory cell infiltration in the model group, and evident reduction of degree of cardiac fibrosis and interstitial edema in the EA group. CONCLUSIONS: EA of PC6 can improve the cardiac function and cardiac morphology in mice with myocardial hypertrophy, which may be related to its functions in down-regulating the expression of transient receptor potential channels.


Asunto(s)
Electroacupuntura , Ratones Endogámicos C57BL , Miocardio , Animales , Ratones , Masculino , Humanos , Miocardio/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Cardiomegalia/metabolismo , Cardiomegalia/terapia , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Puntos de Acupuntura , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética
15.
J Bone Miner Res ; 39(8): 1045-1060, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38836494

RESUMEN

Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.


Accumulating evidence has shown that, across organs systems, peripheral nerves regulate the process of tissue repair and regeneration. This is particularly relevant in the context of musculoskeletal injuries such as those affecting the bone and tendon. The question then arises: what is the function of peripheral innervation in the repair of bone and tendon injuries? This review offers an in-depth look at the ways in which nerves regulate the healing of bone and tendon injuries at various stages of recovery. A deeper comprehension of the influence of nerves on the repair of these tissues could pave the way for the development of future therapeutic strategies for tissue healing.


Asunto(s)
Huesos , Traumatismos de los Tendones , Cicatrización de Heridas , Humanos , Traumatismos de los Tendones/fisiopatología , Traumatismos de los Tendones/patología , Animales , Huesos/patología , Neuronas/metabolismo , Neuronas/patología , Tendones/patología , Tendones/fisiopatología
16.
Microbiome ; 12(1): 93, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778376

RESUMEN

BACKGROUND: The gut microbiota and their hosts profoundly affect each other's physiology and evolution. Identifying host-selected traits is crucial to understanding the processes that govern the evolving interactions between animals and symbiotic microbes. Current experimental approaches mainly focus on the model bacteria, like hypermutating Escherichia coli or the evolutionary changes of wild stains by host transmissions. A method called atmospheric and room temperature plasma (ARTP) may overcome the bottleneck of low spontaneous mutation rates while maintaining mild conditions for the gut bacteria. RESULTS: We established an experimental symbiotic system with gnotobiotic bee models to unravel the molecular mechanisms promoting host colonization. By in vivo serial passage, we tracked the genetic changes of ARTP-treated Snodgrassella strains from Bombus terrestris in the non-native honeybee host. We observed that passaged isolates showing genetic changes in the mutual gliding locus have a competitive advantage in the non-native host. Specifically, alleles in the orphan mglB, the GTPase activating protein, promoted colonization potentially by altering the type IV pili-dependent motility of the cells. Finally, competition assays confirmed that the mutations out-competed the ancestral strain in the non-native honeybee gut but not in the native host. CONCLUSIONS: Using the ARTP mutagenesis to generate a mutation library of gut symbionts, we explored the potential genetic mechanisms for improved gut colonization in non-native hosts. Our findings demonstrate the implication of the cell mutual-gliding motility in host association and provide an experimental system for future study on host-microbe interactions. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Mutagénesis , Simbiosis , Animales , Abejas/microbiología , Microbioma Gastrointestinal/genética , Mutación
17.
Analyst ; 149(10): 2925-2931, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38587246

RESUMEN

Sensitive detection of microRNA (miRNA), one of the most promising biomarkers, plays crucial roles in cancer diagnosis. However, the low expression level of miRNA makes it extremely urgent to develop ultrasensitive and highly selective strategies for quantification of miRNA. Herein, a DNA machine is rationally constructed for amplified detection and imaging of low-abundance miRNA in living cells based on the toehold-mediated strand displacement reaction (TMSDR). The isothermal and enzyme-free DNA machine with low background leakage is fabricated by integrating two DNA circuits into a cascade system, in which the output of one circuit serves as the input of the other one. Once the DNA machine is transfected into breast cancer cells, the overexpressed miRNA-203 initiates the first-layer circuit through TMSDR, leading to the concentration variation of fuel strands, which further influences the assembly of hairpin DNA in the second-layer circuit and the occurrence of fluorescence resonance energy transfer (FRET) for fluorescence imaging. Benefiting from the cascade of the two-layer amplification reaction, the proposed DNA machine acquires a detection limit down to 4 fM for quantification of miR-203 and a 10 000-fold improvement in amplification efficiency over the single circuit. Therefore, the two-layer circuit cascade-based DNA machine provides an effective platform for amplified analysis of low-abundance miRNA with high sensitivity, which holds great promise in biomedical and clinical research.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Límite de Detección , MicroARNs , MicroARNs/análisis , Humanos , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas Biosensibles/métodos , ADN/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Células MCF-7 , Imagen Óptica/métodos , Línea Celular Tumoral , Hibridación de Ácido Nucleico
18.
Mol Ther ; 32(5): 1479-1496, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429926

RESUMEN

Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-ß1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-ß1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-ß1, was suppressed directly by TGF-ß1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-ß1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/ß-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.


Asunto(s)
Regeneración Ósea , Inflamación , Células Madre Mesenquimatosas , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Osteogénesis , Proteína Wnt4 , Células Madre Mesenquimatosas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Osteogénesis/genética , Regeneración Ósea/genética , Animales , Ratones , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Regulación de la Expresión Génica , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Vía de Señalización Wnt , Masculino , Transcripción Genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Modelos Animales de Enfermedad
19.
Lipids Health Dis ; 23(1): 42, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331880

RESUMEN

BACKGROUND: Lewy body dementia (LBD) ranks second among prevalent neurodegenerative dementias. Previous studies have revealed associations of serum lipid measures with several neurodegenerative diseases. Nevertheless, the potential connection between serum lipids and LBD remains undetermined. In this study, Mendelian randomization (MR) analyses were carried out to assess the causal relationships of several serum lipid measures with the risk of developing LBD. METHODS: Genome-wide association study (GWAS) data for serum lipids and LBD in European descent individuals were acquired from publicly available genetic summary data. A series of filtering procedures were conducted to identify the genetic variant candidates that are related to serum lipids, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). The causal effects were primarily determined through inverse-variance weighting (IVW)-based analyses. RESULTS: Neither TG (odds ratio [OR] = 1.149; 95% confidence interval [CI], 0.887-1.489; P = 0.293) nor HDL-C (OR = 0.864; 95% CI, 0.718-1.041; P = 0.124) had causal effects on LBD. However, a causal relationship was identified between LDL-C and LBD (OR = 1.343; 95% CI, 1.094-1.649; P = 0.005), which remained significant (OR = 1.237; 95% CI, 1.015-1.508; P = 0.035) following adjustment for HDL-C and TG in multivariable MR. CONCLUSIONS: Elevated serum LDL-C increases the risk of LBD, while HDL-C and TG have no significant causal effects on LBD.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Análisis de la Aleatorización Mendeliana , Humanos , LDL-Colesterol , Factores de Riesgo , Estudio de Asociación del Genoma Completo , Enfermedad por Cuerpos de Lewy/genética , Polimorfismo de Nucleótido Simple/genética , Triglicéridos , HDL-Colesterol
20.
Int J Nanomedicine ; 19: 91-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192634

RESUMEN

Background: Although systemic chemotherapy is a standard approach for osteosarcoma (OS) treatment, its efficacy is limited by the inherent or acquired resistance to apoptosis of tumor cells. Ferroptosis is considered as an effective strategy capable of stimulating alternative pathways of cancer cell demise. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods and Results: A novel nanovehicle composed of arginine-glycine-aspartate (RGD) modified mesoporous silica-coated iron oxide loading Fin56 was rationally prepared (FSR-Fin56). With the RGD-mediated targeting affinity, FSR-Fin56 could achieve selective accumulation and accurate delivery of cargos into cancer cells. Upon exposure to NIR light, the nanovehicle could generate localized hyperthermia and disintegrate to liberate the therapeutic payload. The released Fin56 triggered the degradation of GPX4, while Fe3+ depleted the intracellular GSH pool, producing Fe2+ as a Fenton agent. The local rise in temperature, in conjunction with Fe2+-mediated Fenton reaction, led to a rapid and significant accumulation of ROS, culminating in LPOs and ferroptotic death. The outstanding therapeutic efficacy and safety of the nanovehicle were validated both in vitro and in vivo. Conclusion: The Fin56-loaded FSR nanovehicle could effectively disturb the redox balance in cancer cells. Coupled with NIR laser irradiation, the cooperative CDT and PTT achieved a boosted ferroptosis-inducing therapy. Taken together, this study offers a compelling strategy for cancer treatment, particularly for ferroptosis-sensitive tumors like osteosarcoma.


Asunto(s)
Neoplasias Óseas , Ferroptosis , Hipertermia Inducida , Osteosarcoma , Humanos , Hierro , Osteosarcoma/tratamiento farmacológico , Neoplasias Óseas/tratamiento farmacológico , Oligopéptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA