Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 17(5): e202301819, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38288777

RESUMEN

Currently, the durability of electrode materials remains a big obstacle to the widespread adoption of proton exchange membrane fuel cells (PEMFCs). Herein thiourea and sodium dodecyl benzene sulfonate (SDS) were employed as sulfur source and carbon source to modify the pristine carbon black (Ketjen black EC300 J). A highly durable carbon supported Pt nanosized catalyst with higher platinum utilization for oxygen reduction reaction (ORR) in PEMFCs was produced by doping elemental sulfur into carbon supports and decreasing the carbon pore sizes and volume through a successive impregnation technique. The catalyst exhibits an initial activity of 0.167 A mgPt -1 at 0.90 V and demonstrates minimal activity loss after acceleration stress test (30,000 cycles of AST). The half-wave potential loss for representative sample (Pt/S-C-3) is only 14 mV with only 21.8 % ECSA decrease, 27.5 % MA loss and 5.9 % SA loss. A sintering test at various temperature shows a minor average size increase for sulfur-doped carbon (S-C) supported one (from 2.09 to 2.52 nm). In single-cell test, the MEA sample employing the platinum catalyst on modified carbon as cathode exhibited almost negligible performance loss after 30,000 cycles of AST.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA