Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
J Environ Sci (China) ; 149: 268-277, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181641

RESUMEN

Sulfur trioxide (SO3) as a condensable particle matter has a significant influence on atmospheric visibility, which easily arouses formation of haze. It is imperative to control the SO3 emission from the industrial flue gas. Three commonly used basic absorbents, including Ca(OH)2, MgO and NaHCO3 were selected to explore the effects of temperature, SO2 concentration on the SO3 absorption, and the reaction mechanism of SO3 absorption was further illustrated. The suitable reaction temperature for various absorbents were proposed, Ca(OH)2 at the high temperatures above 500°C, MgO at the low temperatures below 320°C, and NaHCO3 at the temperature range of 320-500°C. The competitive absorption between SO2 and SO3 was found that the addition of SO2 reduced the SO3 absorption on Ca(OH)2 and NaHCO3, while had no effect on MgO. The order of the absorption selectivity of SO3 follows MgO, NaHCO3 and Ca(OH)2 under the given conditions in this work. The absorption process of SO3 on NaHCO3 follows the shrinking core model, thus the absorption reaction continues until NaHCO3 was exhausted with the utilization rate of nearly 100%. The absorption process of SO3 on Ca(OH)2 and MgO follows the grain model, and the dense product layer hinders the further absorption reaction, resulting in low utilization of about 50% for Ca(OH)2 and MgO. The research provides a favorable support for the selection of alkaline absorbent for SO3 removal in application.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Azufre , Dióxido de Azufre/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , Óxidos de Azufre/química , Modelos Químicos , Óxido de Magnesio/química , Hidróxido de Calcio/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-39318019

RESUMEN

BACKGROUND: Glucose-regulated protein 78 (GRP78), as a chaperone protein, can protect the endoplasmic reticulum of cells and is expressed to influence chemoresistance and prognosis in cancer. Deoxypodophyllotoxin (DPT) is a compound with antitumor effects on cancers. DPT inhibits the proliferation of osteosarcoma by inducing apoptosis, necrosis, or cell cycle arrest. OBJECT: This study was performed to demonstrate the molecular mechanism by which DPT attenuates osteosarcoma progression through GRP78. METHODS: Natural compound libraries and western blot (WB) were used to screen the inhibitors of osteosarcoma GRP78. The expression of mitochondria-related genes in cancer cells of the treatment group was detected by quantitative real-time PCR (qPCR) and WB. 3-(4,5)- Dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and 5-ethynyl-2'- deoxyuridine (EDU) were used to discover the activity and proliferation of osteosarcoma cells treated with DPT. We constructed an in vivo mouse model of DPT drug therapy and carried out immunohistochemical detection of xenografts. The treated osteosarcoma cells were analyzed using bioinformatics and electron microscopy. The data were analyzed finally. RESULTS: DPT inhibited osteosarcoma cell survival and the growth of tumor xenografts. It promoted up-regulation of BCL2-associated X protein (Bax) and B-cell CLL/lymphoma 2 (Bcl-2), which serves to mediate and attenuate, respectively, the killing activities of DPT through mitochondria dysfunction. The effect of DPT against cancer cells could be attenuated by the overexpression of GRP78, characterized by the inactivation of the caspase cascade. The loss of GRP78 in osteosarcoma cells negatively mediated the basal level of autophagyassociated genes. DPT stimulated autophagy via the phosphoinositide 3-kinase (PI3K)-v-akt murine thymoma viral oncogene homolog (AKT), a mechanistic target of rapamycin (mTOR) axis. The autophagy caused by DPT played an active role in the osteosarcoma of humans and blocked the apoptotic cascade. CONCLUSION: Combination treatment with the GRP78 inhibitor DPT and pharmacological autophagy inhibitors will be a meaningful method of obviating osteosarcoma cells.

3.
ACS Catal ; 14(18): 14183-14194, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39324053

RESUMEN

High-valent oxoiron species have been invoked as oxidizing agents in a variety of iron-dependent oxygenases. Taking inspiration from nature, selected nonheme iron complexes have been developed as catalysts to elicit C-H oxidation through the mediation of putative oxoiron(V) species, akin to those proposed for Rieske oxygenases. The addition of carboxylic acids in these iron-catalyzed C-H oxidations has proved highly beneficial in terms of product yields and selectivities, suggesting the direct involvement of iron(V)-oxo-carboxylato species. When the carboxylic acid functionality is present in the alkane substrate, it acts as a directing group, enabling the selective intramolecular γ-C-H hydroxylation that eventually affords γ-lactones. While this mechanistic frame is solidly supported by previous mechanistic studies, direct spectroscopic detection of the key iron(V)-oxo-carboxylato intermediate and its competence for engaging in the selective γ-C-H oxidation leading to lactonization have not been accomplished. In this work, we generate a series of well-defined iron(V)-oxo-carboxylato species (2c-2f) differing in the nature of the bound carboxylate ligand. Species 2c-2f are characterized by a set of spectroscopic techniques, including UV-vis spectroscopy, cold-spray ionization mass spectrometry (CSI-MS), and, in selected cases, EPR and Mössbauer spectroscopies. We demonstrate that 2c-2f undergo site-selective γ-lactonization of the carboxylate ligand in a stereoretentive manner, thus unequivocally identifying metal-oxo-carboxylato species as the powerful yet selective C-H cleaving species in catalytic γ-lactonization reactions of carboxylic acids. Reactivity experiments confirm that the intramolecular formation of γ-lactones is in competition with the intermolecular oxidation of external alkanes and olefins. Finally, mechanistic studies, together with DFT calculations, support a mechanism involving a site-selective C-H cleavage in the γ-position of the carboxylate ligand by the oxo moiety, followed by a fast carboxylate rebound, eventually leading to the selective formation of γ-lactones.

4.
Chem Sci ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39296996

RESUMEN

57Fe nuclear resonance vibrational spectroscopy (NRVS) has been applied to study a series of tetranuclear iron ([Fe4]) clusters based on a multidentate ligand platform (L3-) anchored by a 1,3,5-triarylbenzene linker and pyrazolate or (tertbutylamino)pyrazolate ligand (PzNH t Bu-). These clusters bear a terminal Fe(iii)-O/OH moiety at the apical position and three additional iron centers forming the basal positions. The three basal irons are connected with the apical iron center via a µ4-oxido ligand. Detailed vibrational analysis via density functional theory calculations revealed that strong NRVS spectral features below 400 cm-1 can be used as an oxidation state marker for the overall [Fe4] cluster core. The terminal Fe(iii)-O/OH stretching frequencies, which were observed in the range of 500-700 cm-1, can be strongly modulated (energy shifts of 20-40 cm-1 were observed) upon redox events at the three remote basal iron centers of the [Fe4] cluster without the change of the terminal Fe(iii) oxidation state and its coordination environment. Therefore, the current study provides a quantitative vibrational analysis of how the remote iron centers within the same iron cluster exert exquisite control of the chemical reactivities and thermodynamic properties of the specific iron site that is responsible for small molecule activation.

5.
Front Oncol ; 14: 1419306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978737

RESUMEN

Liquid biopsies including pleural fluid or plasma are commonly applied for patients with advanced non-small cell lung cancer (NSCLC) and pleural effusion (PE) to guide the treatment. ALK-TKIs are the first options for patients with ALK-positive mutations and combining ALK-TKIs with angiogenic agents may improve survival. We report here one case with ALK-positive lung adenocarcinoma in which the patient achieved a prolonged progression-free survival (PFS) of 97 months after undergoing precise pleural effusion NGS and receiving combined bevacizumab treatment following multiple-line ALK-TKI resistance.

6.
J Inorg Biochem ; 259: 112632, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38950482

RESUMEN

Aminophenol dioxygenases (APDO) are mononuclear nonheme iron enzymes that utilize dioxygen (O2) to catalyze the conversion of o-aminophenols to 2-picolinic acid derivatives in metabolic pathways. This study describes the synthesis and O2 reactivity of two synthetic models of substrate-bound APDO: [FeII(TpMe2)(tBu2APH)] (1) and [FeII(TpMe2)(tBuAPH)] (2), where TpMe2 = hydrotris(3,5-dimethylpyrazole-1-yl)borate, tBu2APH = 4,6-di-tert-butyl-2-aminophenolate, and tBuAPH2 = 4-tert-butyl-2-aminophenolate. Both Fe(II) complexes behave as functional APDO mimics, as exposure to O2 results in oxidative CC bond cleavage of the o-aminophenolate ligand. The ring-cleaved products undergo spontaneous cyclization to give substituted 2-picolinic acids, as verified by 1H NMR spectroscopy, mass spectrometry, and X-ray crystallography. Reaction of the APDO models with O2 at low temperature reveals multiple intermediates, which were probed with UV-vis absorption, electron paramagnetic resonance (EPR), Mössbauer (MB), and resonance Raman (rRaman) spectroscopies. The most stable intermediate at -70 °C in THF exhibits multiple isotopically-sensitive features in rRaman samples prepared with 16O2 and 18O2, confirming incorporation of O2-derived atom(s) into its molecular structure. Insights into the geometric structures, electronic properties, and spectroscopic features of the observed intermediates were obtained from density functional theory (DFT) calculations. Although functional APDO models have been previously reported, this is the first time that an oxygenated ligand-based radical has been detected and spectroscopically characterized in the ring-cleaving mechanism of a relevant synthetic system.


Asunto(s)
Aminofenoles , Dioxigenasas , Oxígeno , Oxígeno/química , Oxígeno/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/química , Aminofenoles/química , Oxidación-Reducción , Complejos de Coordinación/química , Ácidos Picolínicos/química , Teoría Funcional de la Densidad , Cristalografía por Rayos X
7.
Zool Res ; 45(4): 910-923, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021080

RESUMEN

Litopenaeus vannamei is the most extensively cultured shrimp species globally, recognized for its scale, production, and economic value. However, its aquaculture is plagued by frequent disease outbreaks, resulting in rapid and massive mortality. etiological research often lags behind the emergence of new diseases, leaving the causal agents of some shrimp diseases unidentified and leading to nomenclature based on symptomatic presentations, especially in cases involving co- and polymicrobial pathogens. Comprehensive data on shrimp disease statuses remain limited. In this review, we summarize current knowledge on shrimp diseases and their effects on the gut microbiome. Furthermore, we also propose a workflow integrating primary colonizers, "driver" taxa in gut networks from healthy to diseased states, disease-discriminatory taxa, and virulence genes to identify potential polymicrobial pathogens. We examine both abiotic and biotic factors (e.g., external and internal sources and specific-disease effects) that influence shrimp gut microbiota, with an emphasis on the "holobiome" concept and common features of gut microbiota response to diverse diseases. After excluding the effects of confounding factors, we provide a diagnosis model for quantitatively predicting shrimp disease incidence using disease common-discriminatory taxa, irrespective of the causal agents. Due to the conservation of functional genes used in designing specific primers, we propose a practical strategy applying qPCR-assayed abundances of disease common-discriminatory functional genes. This review updates the roles of the gut microbiota in exploring shrimp etiology, polymicrobial pathogens, and disease incidence, offering a refined perspective for advancing shrimp aquaculture health management.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Animales , Penaeidae/microbiología , Acuicultura , Incidencia
8.
Phys Chem Chem Phys ; 26(23): 16664-16673, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38808589

RESUMEN

For the conversion of fructose/methylglucoside (MG) into both methyl formate (MF) and methyl levulinate (MLev), the C-source of formate [HCOO]- remains unclear at the molecular level. Herein, reaction mechanisms catalyzed by [CH3OH2]+ in a methanol solution were theoretically investigated at the PBE0/6-311++G(d,p) level. For the conversion of fructose into MF and MLev, the formate [HCOO]- comes from the C1-atom of fructose, in which the rate-determining step lies in the reaction of 5-hydroxymethylfurfural (HMF) with CH3OH to yield MF and MLev. The reaction of fructose with CH3OH kinetically tends to generate HMF intermediates rather than yield (MF + MLev). When MG is dissolved in a methanol solution, its O2, O3, and O4 atoms are closer to the first layer of the solvent than O1, O5, and O6 atoms. For the dehydration of MG with methanol into MF and MLev, the formate [HCOO]- stems from the dominant C1- and secondary C3-atoms of MG. Kinetically, MG is ready to yield (MF + MLev), whereas fructose can induce the reaction to remain at the HMF intermediate, inhibiting the further conversion of HMF with CH3OH into MF and MLev. If MG isomerizes into fructose, the reaction will be more preferable for yielding HMF rather than (MF + MLev).

9.
Sci Rep ; 14(1): 12197, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806591

RESUMEN

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Asunto(s)
Extremófilos , Hierro , Rubredoxinas , Hierro/metabolismo , Hierro/química , Extremófilos/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo , Simulación de Dinámica Molecular , Temperatura
10.
Biochemistry ; 63(12): 1588-1598, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38817151

RESUMEN

Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe-4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe-4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Methanosarcina/enzimología , Methanosarcina/genética , Ferredoxinas/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Oxidación-Reducción , Modelos Moleculares , Tiorredoxinas/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Espectroscopía de Resonancia por Spin del Electrón
11.
Phys Chem Chem Phys ; 26(20): 14613-14623, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739028

RESUMEN

A Ru-containing complex shows good catalytic performance toward the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) with the assistance of organic base ligands (OBLs) and CO2. Herein, we report the competitive mechanisms for the hydrogenation of LA to GVL, 4-oxopentanal (OT), and 2-methyltetrahydro-2,5-furandiol (MFD) with HCOOH or H2 as the H source catalyzed by RuCl3 in aqueous solution at the M06/def2-TZVP, 6-311++G(d,p) theoretical level. Kinetically, the hydrodehydration of LA to GVL is predominant, with OT and MFD as side products. With HCOOH as the H source, initially, the OBL (triethylamine, pyridine, or triphenylphosphine) is responsible for capturing H+ from HCOOH, leading to HCOO- and [HL]+. Next, the Ru3+ site is in charge of sieving H- from HCOO-, yielding [RuH]2+ hydride and CO2. Alternatively, with H2 as the H source, the OBL stimulates the heterolysis of H-H bond with the aid of Ru3+ active species, producing [RuH]2+ and [HL]+. Toward the [RuH]2+ formation, H2 as the H source exhibits higher activity than HCOOH as the H source in the presence of an OBL. Thereafter, H- in [RuH]2+ gets transferred to the unsaturated C site of ketone carbonyl in LA. Afterwards, the Ru3+ active species is capable of cleaving the C-OH bond in 4-hydroxyvaleric acid, yielding [RuOH]2+ hydroxide and GVL. Subsequently, CO2 promotes Ru-OH bond cleavage in [RuOH]2+, forming HCO3- and regenerating the Ru3+-active species owing to its Lewis acidity. Lastly, between the resultant HCO3- and [HL]+, a neutralization reaction occurs, generating H2O, CO2, and OBLs. Thus, the present study provides insights into the promotive roles of additives such as CO2 and OBLs in Ru-catalyzed hydrogenation.

12.
J Am Chem Soc ; 146(6): 3796-3804, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38299607

RESUMEN

S = 2 FeIV═O centers generated in the active sites of nonheme iron oxygenases cleave substrate C-H bonds at rates significantly faster than most known synthetic FeIV═O complexes. Unlike the majority of the latter, which are S = 1 complexes, [FeIV(O)(tris(2-quinolylmethyl)amine)(MeCN)]2+ (3) is a rare example of a synthetic S = 2 FeIV═O complex that cleaves C-H bonds 1000-fold faster than the related [FeIV(O)(tris(pyridyl-2-methyl)amine)(MeCN)]2+ complex (0). To rationalize this significant difference, a systematic comparison of properties has been carried out on 0 and 3 as well as related complexes 1 and 2 with mixed pyridine (Py)/quinoline (Q) ligation. Interestingly, 2 with a 2-Q-1-Py donor combination cleaves C-H bonds at 233 K with rates approaching those of 3, even though Mössbauer analysis reveals 2 to be S = 1 at 4 K. At 233 K however, 2 becomes S = 2, as shown by its 1H NMR spectrum. These results demonstrate a unique temperature-dependent spin-state transition from triplet to quintet in oxoiron(IV) chemistry that gives rise to the high C-H bond cleaving reactivity observed for 2.

13.
Angew Chem Int Ed Engl ; 63(1): e202315844, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37963815

RESUMEN

Valanimycin is an azoxy-containing natural product isolated from the fermentation broth of Streptomyces viridifaciens MG456-hF10. While the biosynthesis of valanimycin has been partially characterized, how the azoxy group is constructed remains obscure. Herein, the membrane protein VlmO and the putative hydrazine synthetase ForJ from the formycin biosynthetic pathway are demonstrated to catalyze N-N bond formation converting O-(l-seryl)-isobutyl hydroxylamine into N-(isobutylamino)-l-serine. Subsequent installation of the azoxy group is shown to be catalyzed by the non-heme diiron enzyme VlmB in a reaction in which the N-N single bond in the VlmO/ForJ product is oxidized by four electrons to yield the azoxy group. The catalytic cycle of VlmB appears to begin with a resting µ-oxo diferric complex in VlmB, as supported by Mössbauer spectroscopy. This study also identifies N-(isobutylamino)-d-serine as an alternative substrate for VlmB leading to two azoxy regioisomers. The reactions catalyzed by the kinase VlmJ and the lyase VlmK during the final steps of valanimycin biosynthesis are established as well. The biosynthesis of valanimycin was thus fully reconstituted in vitro using the enzymes VlmO/ForJ, VlmB, VlmJ and VlmK. Importantly, the VlmB-catalyzed reaction represents the first example of enzyme-catalyzed azoxy formation and is expected to proceed by an atypical mechanism.


Asunto(s)
Compuestos Azo , Compuestos Azo/química
14.
Angew Chem Int Ed Engl ; 63(3): e202316378, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37997195

RESUMEN

Lewis acid-bound high valent Mn-oxo species are of great importance due to their relevance to photosystem II. Here, we report the synthesis of a unique [(BnTPEN)Mn(III)-O-Ce(IV)(NO3 )4 ]+ adduct (2) by the reaction of (BnTPEN)Mn(II) (1) with 4 eq. ceric ammonium nitrate. 2 has been characterized using UV/Vis, NMR, resonance Raman spectroscopy, as well as by mass spectrometry. Treatment of 2 with Sc(III)(OTf)3 results in the formation of (BnTPEN)Mn(IV)-O-Sc(III) (3), while HClO4 addition to 2 forms (BnTPEN)Mn(IV)-OH (4), reverting to 2 upon Ce(III)(NO3 )3 addition. 2 can also be prepared by the oxidation of 1 eq. Ce(III)(NO3 )3 with [(BnTPEN)Mn(IV)=O]2+ (5). In addition, the EPR spectroscopy revealed the elegant temperature-dependent equilibria between 2 and Mn(IV) species. The binding of redox-active Ce(IV) boosts electron transfer efficiency of 2 towards ferrocenes. Remarkably, the newly characterized Mn(III)-O-Ce(IV) species can carry out O-atom and H-atom transfer reactions.

15.
Chin J Integr Med ; 30(2): 152-162, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38038835

RESUMEN

OBJECTIVE: To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms. METHODS: Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05). CONCLUSION: EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.


Asunto(s)
Colitis , Electroacupuntura , Indoles , Sulfonamidas , Ratas , Animales , Ratas Sprague-Dawley , Serotonina , Puntos de Acupuntura , Dolor Referido , Péptido Relacionado con Gen de Calcitonina , Transducción de Señal , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/terapia
16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1019019

RESUMEN

Objective To analyze the treatment strategy of the atrial septal defect in the surgical treatment of Ebstein's anomaly combined with the atrial septal defect and the short-term follow-up results of the treatment of Ebstein's anomaly.Methods A retrospective analysis of the clinical data and follow-up results of 20 patients with Ebstein's anomaly and atrial septal defect was conducted from September 2017 to February 2021.And the statistical analysis on the preoperative and postoperative echocardiography results of this group of patients was performed.Results Sixteen patients underwent the biventricular correction surgery,among whom two cases underwent the horizontal atrial tricuspid valvuloplasty(Danielsons procedure),four cases underwent the vertical atrial tricuspid valvuloplasty(Carpentier procedure),and ten cases underwent the conical reconstruction.Two patients were given a half ventricular correction surgery(tricuspid valve reconstruction combined with bidirectional Glenn surgery)and two patients underwent the bidirectional Glenn surgery.The combined atrial septal defects were closed in one stage during extracorporeal circulation for correction of deformitie in 20 patients.At 1,3,6,and 12 months after the surgery,the patient's right ventricular size significantly decreased compared to preoperative(P<0.05),and cardiac function(left ventricular ejection fraction)significantly improved(P<0.05).Conclusion The surgical treatment of Ebstein's anomaly combined with the atrial septal defect should follow the principle of individualized treatment.Biventricular correction is still the first choice for the treatment of Ebstein's anomaly,and the atrial septal defect should be closed at one stage,so as to obtain a good therapeutic effect.

17.
ACS Appl Mater Interfaces ; 15(39): 45668-45675, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37725370

RESUMEN

Biological hazards caused by bacteria, viruses, and toxins have become a major survival and development issue facing the international community. However, the traditional method of disinfection and sterilization is helpless in dealing with viruses that spread quickly and are highly infectious. Metal-organic framework (MOF) biocidal materials hold promise as superior alternatives to traditional sterilization materials because of their stable framework structures and unique properties. Now, we demonstrate for the first time the synthesis of a MOF (TIBT-Cu) containing Cu metal centers and tetraiodo-4,4'-bi-1,2,4-triazole as the main ligand. This novel MOF biocidal material has good thermal stability (Td = 278 °C), excellent mechanical sensitivity, and a high bacteriostatic efficiency (>99.90%). Additionally, the particles produced by the combustion of TIBT-Cu are composed of active iodine substances and CuO particles, which can act synergistically against harmful microorganisms such as bacteria and viruses. This study provides a new perspective for the preparation of highly effective bactericidal materials.

18.
Clin Exp Immunol ; 214(2): 162-169, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37696500

RESUMEN

Chemo-immunotherapy has become the best first-line treatment for advanced lung cancer patients without oncogenic drivers. However, it may also lead to an increased incidence and severity of treatment-related adverse events. In this retrospective study, lung cancer patients administrated with either anti-PD-1 or anti-PD-L1 treatment plus chemotherapy were included. Data on demographic characteristics, disease characteristics, treatment strategies, laboratory results, and clinical outcomes were collected from the Electronic Medical Records System and evaluation scales. Chi-square, univariate, and multivariate logistic regression analyses were used to identify the risk factors for immune-related adverse events (irAEs). A total of 116 patients were included in the study, and the majority experienced treatment-related adverse events. Adverse events of any grade were reported in 114 (98.3%) patients, with 73 (62.9%) experiencing Grade 3 or higher events. The most frequent adverse events were anemia (67.2%), decreased appetite (62.9%), and alopecia (53.4%). Fifty-four (46.6%) patients were diagnosed with irAEs, with hypothyroidism (28.4%) being the most commonly reported. Multivariable analysis demonstrated a significant correlation between the number of treatment cycles, elevated baseline levels of thyroid stimulating hormone (TSH) and interleukin-6 (IL-6) with irAEs (OR = 1.222, P = 0.009, OR = 1.945, P = 0.016, OR = 1.176, P = 0.004), and IL-6 was identified as a strong predictor of severe irAEs (OR = 1.084, P = 0.014). Our study demonstrated the safety of chemo-immunotherapy in lung cancer patients without additional toxicity. The number of treatment cycles, higher baseline levels of TSH and IL-6 were identified as potential clinical biomarkers for irAEs.


Asunto(s)
Enfermedades del Sistema Inmune , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Retrospectivos , Interleucina-6 , Factores de Riesgo , Inmunoterapia/efectos adversos , Tirotropina
19.
J Phys Chem A ; 127(31): 6400-6411, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37498222

RESUMEN

Al-containing catalysts, e.g., Al(OTf)3, show good catalytic performance toward the conversion of cellulose to fructose in methanol solution. Here, we report the catalytic isomerization and alcoholysis mechanisms for the conversion of cellobiose to fructose at the PBE0/6-311++G(d,p), aug-cc-pVTZ theoretical level, combining the relevant experimental verifications of electrospray ionization mass spectrometry (ESI-MS), high-performance liquid chromatography (HPLC), and the attenuated total reflection-infrared (ATR-IR) spectra. From the alcoholysis of Al(OTf)3 in methanol solution, the catalytically active species involves both the [CH3OH2]+ Brønsted acid and the [Al(CH3O)(OTf)(CH3OH)4]+ Lewis acid. There are two reaction pathways, i.e., one through glucose (glycosidic bond cleavage followed by isomerization, w-G) and another through cellobiulose (isomerization followed by glycosidic bond cleavage, w-L). The Lewis acid ([Al(CH3O)(OTf)(CH3OH)4]+) is responsible for the aldose-ketose tautomerization, while the Brønsted acid ([CH3OH2]+) is in charge of ring-opening, ring-closure, and glycosidic bond cleavage. For both w-G and w-L, the rate-determining steps are related to the intramolecular [1,2]-H shift between C1-C2 for the aldose-ketose tautomerization catalyzed by the [Al(CH3O)(OTf)(CH3OH)4]+ species. The Lewis acid ([Al(CH3O)(OTf)(CH3OH)4]+) exhibits higher catalytic activity toward the aldose-ketose tautomerization of glycosyl-chain-glucose to glycosyl-chain-fructose than that of chain-glucose to chain-fructose. Besides, the Brønsted acid ([CH3OH2]+) shows higher catalytic activity toward the glycosidic bond cleavage of cellobiulose than that of cellobiose. Kinetically, the w-L pathway is predominant, whereas the w-G pathway is minor. The theoretically proposed mechanism has been experimentally testified. These insights may advance on the novel design of the catalytic system toward the conversion of cellulose to fructose.

20.
J Am Chem Soc ; 145(25): 13696-13708, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37306669

RESUMEN

The Wood-Ljungdahl Pathway is a unique biological mechanism of carbon dioxide and carbon monoxide fixation proposed to operate through nickel-based organometallic intermediates. The most unusual steps in this metabolic cycle involve a complex of two distinct nickel-iron-sulfur proteins: CO dehydrogenase and acetyl-CoA synthase (CODH/ACS). Here, we describe the nickel-methyl and nickel-acetyl intermediates in ACS completing the characterization of all its proposed organometallic intermediates. A single nickel site (Nip) within the A cluster of ACS undergoes major geometric and redox changes as it transits the planar Nip, tetrahedral Nip-CO and planar Nip-Me and Nip-Ac intermediates. We propose that the Nip intermediates equilibrate among different redox states, driven by an electrochemical-chemical (EC) coupling process, and that geometric changes in the A-cluster linked to large protein conformational changes control entry of CO and the methyl group.


Asunto(s)
Proteínas Hierro-Azufre , Níquel , Acetilcoenzima A/química , Níquel/química , Dióxido de Carbono/metabolismo , Anaerobiosis , Proteínas Hierro-Azufre/química , Óxido Nítrico Sintasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Monóxido de Carbono/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA