Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(1): e23371, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163114

RESUMEN

In the present study, we demonstrated that the presence of cysteine could remarkably enhance the degradation of atrazine by Fe3O4/persulfate system. The results of electron paramagnetic resonance (EPR) spectra confirmed the combination of cysteine and Fe3O4 exhibited much higher activity on activation of persulfate to generate more SO4•- and •OH than Fe3O4 alone. At pH of 3.0, SO4•- and •OH contributed to about 58.2 % and 41.8 % of atrazine removal respectively, while •OH gradually dominated the oxidation of atrazine from neutral condition to alkaline condition. The co-existing Cl- and HCO3- could quench SO4•-, resulting in the inhibition of atrazine degradation. The presence of low natural organic matters (NOM) concentration (0-2 mg L-1) could enhance the atrazine removal, and high concentration (>5 mg L-1) of NOM restrained the atrazine degradation. During the Cysteine/Fe3O4/Persulfate process, cysteine served as a complexing reagent and reductant. Through acidolysis and complexation, Fe3O4 could release dissolved and surface bound Fe2+, both of which contributed to the activation of persulfate together. Meanwhile, cysteine was not rapidly consumed due to a regeneration process, which was beneficial for maintaining Fe2+/Fe3+ cycle and constantly accelerating the activation of persulfate for atrazine degradation. The reused Fe3O4 and cysteine in the Cysteine/Fe3O4/Persulfate process exhibited high stability for the atrazine degradation after three cycles. The degradation pathway of atrazine included alkylic-oxidation, dealkylation, dechlorination-hydroxylation processes. The present study indicates the novel Cysteine/Fe3O4/Persulfate process might be a high potential for treatment of organic polluted water.

2.
Sci Total Environ ; 810: 152189, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890649

RESUMEN

It is challenging to reduce the cadmium (Cd) and arsenic (As) contents of brown rice simultaneously due to their converse chemical behaviors in the paddy soil. Clay minerals, such as sepiolite (SEP), have significant advantages in remediating Cd-contaminated soil. Moreover, iron or manganese oxide loaded SEP can improve the As adsorption efficiency. Herein, ferric nitrate modified sepiolite (NIMS) and iron­manganese modified sepiolite (FMS) were prepared to study their effects on Cd and As accumulation in rice using pot experiments. The results showed that NIMS and FMS had a larger specific surface area than SEP. The application of SEP only decreased Cd content (by 45%), while NIMS and FMS treatments reduced both Cd (by 57% and 87%) and As (by 30% and 25%) contents in brown rice compared with the control. The X-ray photoelectron spectroscopy (XPS) analysis results indicated that MnO2 and MnOOH⁎ in FMS enhanced the adsorption and co-precipitation of Cd as well as the oxidation of As(III) to As(V). The NIMS, as well as the FMS application, increased soil pH, decreased the exchangeable Cd and non-specifically and specifically adsorbed As fractions in soil, and reduced the level of Cd in the pore water. Moreover, NIMS and FMS addition limited the transfer of As from the soil to the roots by enhancing its sequestration in the iron plaque. On the other hand, FMS treatment significantly promoted the uptake of Mn by rice (P < 0.05). The results suggested that both NIMS and FMS were promising materials for simultaneous reduction of Cd and As accumulation in rice. Notably, FMS had better performance in reducing the Cd content in rice than that of NIMS.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Cadmio/análisis , Hierro , Silicatos de Magnesio , Manganeso , Compuestos de Manganeso , Óxidos , Suelo , Contaminantes del Suelo/análisis
3.
Environ Pollut ; 296: 118688, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921946

RESUMEN

In this study, a novel approach was employed for the remediation of cationic and anionic metals/metalloids co-contaminated soil by tetrapolyphosphate enhanced soil washing coupled with ferrous sulfide treatment. Tetrapolyphosphate could simultaneously enhance the desorption of cationic metals (Pb and Zn) and anionic metal/metalloid (Cr and As) from the contaminated soil in the whole tested pH range of 2-10. With addition of 0.15 mol/L tetrapolyphosphate at pH 7.0, the removal ratio of Pb, Zn, As and Cr could achieve 83.1%, 70.4%, 75.7% and 66.4% respectively. The fractionation analysis of heavy metals/metalloids demonstrated the release of exchangeable and Fe/Mn bound forms contributed to most desorption of Pb and Zn. The decreases of non-specifically sorbed form and amorphous and poorly-crystalline hydrous oxides of Fe and Al bound form were responsible for most removal of As. The comparison with other common washing agents (EDTA, oxalate and phosphate) under their respective optimal dosage could confirm that tetrapolyphosphate was superior to simultaneously desorb the cationic and anionic metals/metalloids with higher efficiency. After 12 h, applying 150 mg/L FeS at pH 3.5 could totally remove Pb, Zn, As and Cr from the washing effluent by sulfide precipitation, reduction and adsorption processes. Higher pH would inhibit the removal of As and Cr by FeS. Meanwhile, the residual of tetrapolyphosphate could be totally recovered from the washing effluent by employing anion exchange resin. This study suggests tetrapolyphosphate enhanced soil washing coupled with ferrous sulfide treatment is a promising approach for remediation of cationic and anionic metals/metalloids co-contaminated soil in view of its high efficiency and simple operation.


Asunto(s)
Metaloides , Metales Pesados , Contaminantes del Suelo , Compuestos Ferrosos , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
4.
Water Res ; 203: 117558, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34425436

RESUMEN

Fe-Mn binary oxide has received increasing interest in treating As(III)-containing polluted groundwater due to its low cost and environmental friendliness. Although the stability of Fe-Mn binary oxide is as important as its adsorption ability, little is known about whether and why Fe-Mn binary oxide is stable during As(III) removal. In this study, five successive cycles were conducted to evaluate the stability of Fe-Mn binary oxide for As(III) removal. As(III) oxidation/adsorption kinetics and the speciation distribution of the released Fe and Mn elements within single Fe oxide, Mn oxide, and Fe-Mn binary oxide were investigated by using characterization techniques of TEM-EDS mapping, selected area electron diffraction (SAED), and XPS combined with a binary component reactor, where Fe and Mn oxides were separated by a semipermeable membrane. The results revealed that Fe-Mn binary oxide could maintain excellent stability, although As(III) oxidation/adsorption behavior was coupled with the release of Fe and Mn ions from its surface. The great stability of Fe-Mn binary oxide for As(III) removal was attributed to the rapid return of aqueous Fe(II) and Mn(II) to the solid surface, which subsequently formed new mineral phases mediated by Fe and Mn oxides, thus considerably decreasing the loss of released Mn(II) and Fe(II).


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Adsorción , Compuestos de Manganeso , Oxidación-Reducción , Óxidos , Contaminantes Químicos del Agua/análisis
5.
Front Microbiol ; 12: 641556, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220735

RESUMEN

Clubroot caused by Plasmodiophora brassicae is one of the most destructive diseases in cruciferous crops. Streptomyces alfalfae XY25 T , a biological control agent, exhibited great ability to relieve clubroot disease, regulate rhizosphere bacterial and fungal communities in Chinese cabbage, and promote its growth in greenhouse. Therefore, field experiments were carried out to investigate the effects of S. alfalfae XY25 T on clubroot and rhizosphere microbial community in Chinese cabbage. Results showed that the control efficiency of clubroot by S. alfalfae XY25 T was 69.4%. Applying the agent can alleviate soil acidification; increase the contents of soil organic matter, available nitrogen, available phosphorus, and available potassium; and enhance activities of invertase, urease, catalase, and alkaline phosphatase. During Chinese cabbage growth, bacterial diversity decreased first and then increased, and fungal diversity decreased gradually after inoculation with S. alfalfae XY25 T . High-throughput sequencing analysis showed that the main bacterial phyla were Proteobacteria, Bacteroidetes, Acidobacteria, and Planctomycetes, and the major fungal phyla were Ascomycota and Basidiomycota in rhizosphere soil. The dominant bacterial genera were Flavobacterium, Candidatus, Pseudomonas, Stenotrophomonas, Sphingomonas, Flavisolibacter, and Gemmatimonbacteria with no significant difference in abundance, and the major fungal genera were Monographella, Aspergillus, Hypocreales, Chytridiaceae, Fusarium, Pleosporales, Agaricales, Mortierella, and Pleosporales. The significant differences were observed among Pleosporales, Basidiomycota, Colletotrichum, two strains attributed to Agaricales, and another two unidentified fungi by using S. alfalfae XY25 T . Moreover, quantitative real-time PCR results indicated that P. brassicae content was significantly decreased after the agent inoculation. In conclusion, S. alfalfae XY25 T can affect rhizosphere microbial communities; therefore, applying the agent is an effective approach to reduce the damage caused by clubroot.

6.
Huan Jing Ke Xue ; 42(7): 3527-3534, 2021 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-34212679

RESUMEN

Simultaneously reducing the availability of Cd and As is difficult owing to converse chemical behaviors of Cd and As in soil. In this study, amendments that can simultaneously immobilize Cd and As in soil were determined by an pure soil culture experiment in which flooding and wetting were performed for 30 d each. The effects of sepiolite (Sep), modified sepiolite (IMS and Sep-FM), steel slag (SS), and iron modified biochar (Fe-Bio) on soil pH, Eh, Cd, and As concentrations in pore water, and Cd and As fractions in soil were investigated. It showed that Sep (1%, 2.5%), IMS (1%, 2.5%), Sep-FM (1%, 2.5%), and SS (1%, 5%) treatments increased soil pH value and decreased Eh value and Cd concentrations in soil solution. In addition, As concentrations in soil solution treated with high doses of IMS (2.5%) and SS (5%) were lower than that of CK treatment during the whole incubation period. However, Fe-bio treatment decreased soil pH and increased Eh value and only decreased Cd and As concentrations in soil solution under wet conditions. Compared with the control, the application of the above amendments promoted the transformation of Cd fraction from exchangeable to reducible, oxidizable, and residual. High application rates of IMS (2.5%), Sep-FM (2.5%), and SS (5%) also reduced available As fraction (non-specifically sorbed and specifically-sorbed As fraction), and increased amorphous and poorly-crystalline hydrated Fe and Al oxide-bound As. On the contrary, Fe-bio treatment increased the fractions of non-specifically sorbed, specifically sorbed and residual As in soil. In short, IMS, Sep-FM, and SS are potential materials for remediation of Cd and As contaminated soil. They can effectively immobilize soil Cd and As and promote their transformation to the fractions that plants are difficult to uptake.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Carbón Orgánico , Contaminación Ambiental/análisis , Suelo , Contaminantes del Suelo/análisis
7.
Sci Total Environ ; 756: 143848, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33250243

RESUMEN

Beneficial effects of methyl jasmonate (MeJA) on plants under different abiotic conditions have long been demonstrated. This study aimed to figure out how exogenous MeJA mitigated high-Se toxicity in rice from plant physiology and gene express perspective to provide the theory and technique for safe production of Se-rich rice. The results showed that low concentrations of MeJA at 0.1-1.0 µM inhibited high-Se induced nonreversible toxicity by enhancing antioxidant-system and reducing H2O2 and MDA content in rice seedlings. In comparison with control, addition of low concentrations of MeJA at 0.1-1.0 µM reduced the Se content in roots by 13.6-48.8% and in shoots by 52.6-59.9%. Besides, lower concentrations of MeJA decreased the Se(IV) transformation to SeCys and SeMet. The qRT-PCR analysis showed that application of low concentration of MeJA down-regulated the gene expression of OsNIP2;1, and OsPT2 in roots and OsNIP2;1, OsPT2, OsSBP1, and OsCS in shoots, which inhibited Se absorption. However, high concentrations of MeJA at 2.5-5.0 µM decreased antioxidant capacity and increased H2O2 and MDA content in rice seedlings. The results suggested that MeJA at 0.1-1.0 µM can be used to mitigate high-Se toxicity in rice production. This research augments the knowledge for future utilization of MeJA in down-regulating Se levels in crops.


Asunto(s)
Oryza , Selenio , Acetatos , Antioxidantes , Ciclopentanos , Expresión Génica , Peróxido de Hidrógeno , Oryza/genética , Oxilipinas , Raíces de Plantas , Selenio/toxicidad
8.
Environ Pollut ; 274: 115836, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190981

RESUMEN

Organosilicon has been widely used in various fields of industry and agriculture due to its excellent properties, such as high and low temperature resistance, flame retardant, insulation, radiation resistance and physiological inertia. However, organosilicon toxicity in aquatic animals is seldom known. In this research, two typical silicone or silane coupling agents (KH-560 (3-Glycidoxypropyltrimethoxysilane) and KH-570 (3-Methacryloxypropyltrimethoxysilane)) were used in a hydroponic experiment to evaluate the effects on survival rate, antioxidant response and gene expression in red swamp crayfish (Procambarus clarkii). Crayfishes were grown in black aquaculture boxes containing different concentrations (0, 10, 100 and 1000 mg L-1) of KH-560 and KH-570 for 72 h, and then crayfish samples were harvested and separated into tissues of carapace, gill and muscle for analysis. The results showed that silicone significantly increased malondialdehyde (MDA) content in muscle by 17%-38% except for the treatment of 100 mg L-1 KH-570, and reduced the survival rate of crayfish. Additionally, silicone KH-570 increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) by 15%-31%, 17%-35%, and 9%-46%, as well as the contents of ascorbate (AsA) and glutathione (GSH) by 19%-31%, and 23%-29% respectively, in muscle tissue, and similar results occurred in KH-560. In the carapace, however, SOD activity was significantly decreased at high concentrations level of both silicone treatments. Moreover, silicon (Si) content was higher in the abdominal muscle of crayfish after silicone treatment. Assay of gene expression showed an obvious increasing expression of antioxidant related genes (Sod1, Sod2, Cat1, Cat2, and Pod1, Pod2) under silicone stress. The above results suggested that silicone caused an obvious stress response in crayfish in both biochemical and molecular levels.


Asunto(s)
Antioxidantes , Astacoidea , Animales , Expresión Génica , Branquias , Siliconas
9.
J Hazard Mater ; 401: 123393, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32763692

RESUMEN

Silicon (Si) and selenium (Se), two beneficial elements that alleviate cadmium (Cd) toxicity, are important for agricultural production and human health. However, the effects and related mechanisms of Si-Se interaction on Cd toxicity alleviation are still poorly understood. Herein, a hydroponic experiment was employed to evaluate the effects of Si and Se alone and together, on the growth, Cd content, and biochemical parameters of Cd-treated rice plants. The results revealed that both Si and Se can effectively alleviate Cd toxicity, and a strong synergistic effect of Si and Se was observed. Simultaneous use of Si and Se significantly promoted rice plant growth, decreased malondialdehyde (MDA) content in both the roots and shoots, and reduced Cd translocation factor leading to a significant 73.2 % decrease in shoot Cd content. Additionally, Si-Se interaction increased glutathione (GSH) content, phytochelatin (PC) content and Cd distribution in root cell walls and organelles. Furthermore, the relative expression of OsHMA2 was down-regulated, while those of OsNramp1 and OsMHA3 were up-regulated. The above findings suggest that synergistic effect of Si and Se on Cd toxicity amelioration occurs mainly via regulating gene expression, sequestering Cd in the root cell walls and organelles, and reducing Cd transfer to the shoots.


Asunto(s)
Oryza , Selenio , Contaminantes del Suelo , Cadmio/toxicidad , Humanos , Oryza/genética , Fitoquelatinas , Raíces de Plantas , Selenio/farmacología , Silicio , Contaminantes del Suelo/toxicidad
10.
Environ Pollut ; 257: 113540, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31708278

RESUMEN

In plants, excess selenium (Se) causes toxicity, while the beneficial effects of nitric oxide (NO) have verified in plants under various abiotic conditions. In order to ensure safely Se-enriched rice production, the objective of the research was to clarify how exogenous NO alleviated high Se toxicity in rice. Under high Se (25 µM) stress, the effects of exogenous NO (by applying sodium nitroprusside, an exogenous NO donor) on growth parameters, Se content, Se speciation, photosynthesis, antioxidant system, expressions of Se transport and metabolism-related genes (phosphate transporter, OsPT2; S-adenosylmethionine synthase 1, OsSAMS1; cysteine synthase, OsCS; Se-binding protein gene, OsSBP1) in rice seedlings were investigated by a hydroponic experiment. The results showed that exogenous NO alleviated high Se-induced irreversible damage to root morphology, growth, photosynthesis, antioxidant capacity and decreased the contents of MDA, H2O2 and proline significantly in rice seedlings. Compared with high Se treatment, application of exogenous NO reduced root Se content (10%), and the Se(VI) decreased by 100% in root and shoot. Besides, exogenous NO decreased the accumulation of inorganic Se speciation in rice roots and shoots. Also, the qRT-PCR analysis showed that down-regulated gene expressions of OsPT2, OsSAMS1 and OsCS affected significantly via exogenous NO. So, the exogenous NO could effectively decrease the toxicity of high Se treatment in rice.


Asunto(s)
Óxido Nítrico/metabolismo , Oryza/efectos de los fármacos , Selenio/toxicidad , Contaminantes del Suelo/toxicidad , Antioxidantes/metabolismo , Transporte Biológico/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Hidroponía , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Oryza/metabolismo , Oryza/fisiología , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Selenio/metabolismo , Contaminantes del Suelo/metabolismo
11.
Environ Pollut ; 255(Pt 1): 113146, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31522001

RESUMEN

In wheat production areas of China, soil lead (Pb) pollution is generally accompanied by cadmium (Cd) pollution and it is of considerable significance in repairing the Cd and Pb co-contaminated soils for safe agronomic production. Organosilicon fertilizer (OSiF) is a new type of silicon (Si) fertilizer that can effectively alleviate heavy metal toxicity in plants, but the mechanisms on its heavy metal detoxification are poorly understood. A soil pot experiment was conducted to evaluate and compare the effects of two OSiFs (OSiFA and OSiFB) and an inorganic silicon fertilizer (InOSiF) on wheat heavy metal uptake and biochemical parameters in a Cd and Pb co-contaminated soil. The results demonstrated that OSiFA, OSiFB and InOSiF could alleviate the Cd and Pb toxicity of wheat, as indicated by increasing wheat grain yield by 65%, 45% and 22%, respectively. The Si fertilizers enhanced leaf gas exchange attributes and chlorophyll content, whereas diminished the oxidative damage, as indicated by a lower level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content, and lower activity of superoxide dismutase (SOD) and catalase (CAT) activity, as compared with control. Adding OSiFA, OSiFB and InOSiF increased Si uptake in roots and shoots, thus reducing Cd and Pb accumulation in the wheat shoot, bran and flour, especially, flour Cd contents by 17%, 10% and 31% respectively, flour Pb contents by 74%, 53% and 48% respectively. Also, Si fertilizers application decreased the health risk index (HRI) of both Cd and Pb. The grey correlation degrees of OSiFA, OSiFB and InOSiF are 0.72, 0.77 and 0.61, respectively, indicating that the effects of OSiFs on detoxifying Cd and Pb could be better than that of InOSiF in wheat. Thus, the use of OSiFs might be a feasible approach to reduce Cd and Pb entry into the human body through crops.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/metabolismo , Fertilizantes , Plomo/metabolismo , Silicio/farmacología , Contaminantes del Suelo/metabolismo , Triticum/efectos de los fármacos , China , Clorofila/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Metales Pesados/metabolismo , Raíces de Plantas/metabolismo , Medición de Riesgo , Suelo/química , Superóxido Dismutasa/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo
12.
Chemosphere ; 229: 200-205, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31078034

RESUMEN

In the present study, ascorbic acid (AA) induced persulfate activation was investigated for the further exploration of organic pollutants oxidation by persulfate. We interestingly found that AA showed a significant catalytic activity to persulfate. Under neutral pH and room temperature condition, about 71.3% of pentachlorophenol (PCP, 10 mg L-1) was decomposed in 180 min with 40 mmol L-1 persulfate and 1.0 mmol L-1 AA, while only 15.4% and 3.2% of PCP was removed by alone persulfate and AA respectively. The result of EPR spectra identified sulfate radical (SO4•-) and hydroxyl radical (OH) were generated during the reaction between persulfate and AA. Quenching experiments confirmed that both SO4- and OH contributed to the decomposition of PCP. With the addition of AA augmented from 0 to 1 mmol L-1, the PCP degradation ratio continuously increased. However, excess AA could consume the generated reactive oxygen species (ROSs) that led to the inhibition of PCP degradation. Meanwhile, the PCP degradation by persulfate-AA was strongly pH dependent. The PCP degradation rate was declined as the initial pH increased from 3.5 to 10.5. At pH above 12.5, the base activation began to predominate over AA activation of persulfate. Furthermore, it was observed that the AA inducing persulfate activation was related to the extent of AA ionization, while C6H8O6 promoted the highest persulfate activation for the PCP degradation, and C6H6O62- induced the lowest persulfate activation. This study indicates the high potential of AA induced persulfate activation for treatment of organochlorine contaminated water.


Asunto(s)
Ácido Ascórbico/química , Pentaclorofenol/química , Sulfatos/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química , Oxidación-Reducción
13.
J Hazard Mater ; 358: 265-272, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29990814

RESUMEN

In the present study, biodegradable ligand EDDS was employed to assist ZVI on simultaneous remediation of PCB and heavy metals co-contaminated soils under aerobic condition. With addition of 4 mmol L-1 EDDS and 5 g L-1 ZVI, the total removal ratio of PCB reached 75.3%, and the stabilization ratio of Pb and Cu attained 97.1% and 91.9% respectively. EDDS played two key roles during the process. Firstly, the addition of EDDS could enhance hydroxyl radical generation by ZVI and oxygen for the oxidation of PCB including distribution in the soil phase and dissolved form in the aqueous phase. Secondly, free EDDS could accelerate the release of Cu and Pb from the soil phase to the aqueous phase. As the oxidation of EDDS and the increase of pH value during the process, the dissolved Cu and Pb could be efficiently stabilized by iron oxyhydroxide through coprecipitation. Compared with ZVI/Air, ZVI/EDDS/Air treatment could significantly enhance the stabilization of Pb and Cu. The reason was the dissolution of Cu and Pb by EDDS extraction could reduce the mass transfer limitations between heavy metals and iron oxyhydroxide. Therefore, our study suggests a promising alternative for remediation of organic compounds and heavy metals co-contaminated soil.

14.
Environ Int ; 80: 79-88, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25898154

RESUMEN

Metal pollution is an important issue worldwide, with various documented cases of metal toxicity in mining areas, industries, coal power plants and agriculture sector. Heavy metal polluted soils pose severe problems to plants, water resources, environment and nutrition. Among all non-essential metals, vanadium (V) is becoming a serious matter of discussion for the scientists who deals with heavy metals. Due to its mobility from soil to plants, it causes adverse effects to human beings. This review article illustrates briefly about V, its role and shows the progress about V research so far done globally in the light of the previous work which may assist in inter-disciplinary studies to evaluate the ecological importance of V toxicity.


Asunto(s)
Contaminantes Atmosféricos/análisis , Intoxicación por Metales Pesados , Intoxicación , Contaminantes del Suelo/análisis , Vanadio/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Contaminantes Atmosféricos/toxicidad , Ecología , Humanos , Minería , Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Vanadio/toxicidad , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...