Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 201: 105859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685213

RESUMEN

The efficient use of pesticides has long been a topic of public concern, necessitating a thorough understanding of their movement in plants. This study investigates the translocation and distribution of penthiopyrad in pakchoi plants cultivated both in hydroponic and soil-cultivated conditions. Results indicate that penthiopyrad predominantly accumulates in the roots, with concentrations of 11.3-53.9 mg/kg following root application, and in the leaves, with concentrations of 2.0-17.1 mg/kg following foliar application. The bioconcentration factor exceeded 1, with values ranging from 1.2 to 23.9 for root application and 6.4 to 164.0 for foliar application, indicating a significant role in the absorption and accumulation processes. The translocation factor data, which were <1, suggest limited the translocations within pakchoi plants. The limitation may be attributed to the hydrophobic properties of penthiopyrad (log Kow = 3.86), as evidenced by its predominant distribution in the subcellular solid fractions of pakchoi tissues, accounting for 93.1% to 99.5% of the total proportion. Six metabolites (753-A-OH, M12, 754-T-DO, M11, PCA, and PAM) were identified in this study as being formed during this process. These findings provide valuable insights into the absorption, translocation, and metabolism of penthiopyrad in pakchoi.


Asunto(s)
Hidroponía , Raíces de Plantas , Suelo , Suelo/química , Raíces de Plantas/metabolismo , Hojas de la Planta/metabolismo , Contaminantes del Suelo/metabolismo , Transporte Biológico
2.
Atherosclerosis ; 390: 117430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301602

RESUMEN

BACKGROUND AND AIMS: Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS: Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS: TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.


Asunto(s)
Aterosclerosis , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Becaplermina/genética , Becaplermina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Músculo Liso Vascular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular , Transducción de Señal , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/patología , Fenotipo , Células Cultivadas , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
Mol Nutr Food Res ; 68(5): e2300784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38314939

RESUMEN

SCOPE: Premature ovarian insufficiency (POI) is a common female infertility problem, with its pathogenesis remains unknown. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis has been proposed as a possible mechanism in POI. This study investigates the therapeutic effect of α-ketoglutarate (AKG) on ovarian reserve function in POI rats and further explores the potential molecular mechanisms. METHODS AND RESULTS: POI rats are caused by administration of cyclophosphamide (CTX) to determine whether AKG has a protective effect. AKG treatment increases the ovarian index, maintains both serum hormone levels and follicle number, and improves the ovarian reserve function in POI rats, as evidence by increased the level of lactate and the expression of rate-limiting enzymes of glycolysis in the ovaries, additionally reduced the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, Interleukin-18 (IL-18), and Interleukin-1 beta (IL-1ß). In vitro, KGN cells are treated with LPS and nigericin to mimic pyroptosis, then treated with AKG and MCC950. AKG inhibits inflammatory and pyroptosis factors such as NLRP3, restores the glycolysis process in vitro, meanwhile inhibition of NLRP3 has the same effect. CONCLUSION: AKG ameliorates CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, which provides a new therapeutic strategy and drug target for clinical POI patients.


Asunto(s)
Reserva Ovárica , Insuficiencia Ovárica Primaria , Humanos , Ratas , Femenino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácidos Cetoglutáricos/farmacología , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Piroptosis , Células de la Granulosa/metabolismo , Inflamasomas/metabolismo
4.
Nitric Oxide ; 142: 47-57, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049061

RESUMEN

BACKGROUND: Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS: We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS: These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS: H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.


Asunto(s)
Aterosclerosis , Sulfuro de Hidrógeno , Ratones , Animales , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Transición Endotelial-Mesenquimatosa , Aterosclerosis/genética , Aterosclerosis/metabolismo , Endotelio/metabolismo , ADN/metabolismo , Apolipoproteínas E/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Transición Epitelial-Mesenquimal
5.
Curr Med Chem ; 30(40): 4554-4568, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36476437

RESUMEN

An abdominal aortic aneurysm (AAA) is a progressive dilatation of the vascular wall occurring below the aortic fissure, preferably occurring below the renal artery. The molecular mechanism of AAA has not yet been elucidated. In the past few decades, research on abdominal aortic aneurysm has been mainly focused on the vessel wall, and it is generally accepted that inflammation and middle layer fracture of the vessel wall is the core steps in the development of AAA. However, perivascular adipose tissue plays a non-negligible role in the occurrence and development of AAA. The position of PVAT plays a supporting and protective role on the vascular wall, but the particularity of the location makes it not only have the physiological function of visceral fat; but also can regulate the vascular function by secreting a large number of adipokines and cytokines. An abdominal aortic aneurysm is getting higher and higher, with a vascular rupture, low rescue success rate, and extremely high lethality rate. At present, there is no drug to control the progression or reverse abdominal aortic aneurysm. Therefore, it is critical to deeply explore the mechanism of abdominal aortic aneurysms and find new therapeutic ways to inhibit abdominal aortic aneurysm formation and disease progression. An abdominal aortic aneurysm is mainly characterized by inflammation of the vessel wall and matrix metalloprotein degradation. In this review, we mainly focus on the cytokines released by the perivascular adipose tissue, summarize the mechanisms involved in the regulation of abdominal aortic aneurysms, and provide new research directions for studying abdominal aortic aneurysms.


Asunto(s)
Aneurisma de la Aorta Abdominal , Motivación , Humanos , Aneurisma de la Aorta Abdominal/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo
6.
Genes Dis ; 9(6): 1701-1715, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36157502

RESUMEN

GTPase-activating SH3 domain-binding protein 2 (G3BP2) is a mediator that responds to environmental stresses through stress granule formation and is involved in the progression of chronic diseases. However, no studies have examined the contribution of G3BP2 in the oscillatory shear stress (OSS)-induced endothelial dysfunction. Here we assessed the effects of G3BP2 in endothelial cells (ECs) function and investigated the underlying mechanism. Using shear stress apparatus and partial ligation model, we identified that stress granule-related genes in ECs could be induced by OSS with RNA-seq, and then confirmed that G3BP2 was highly and specifically expressed in athero-susceptible endothelia in the OSS regions. G3bp2 -/- Apoe -/- mice had significantly decreased atherosclerotic lesions associated with deficiency of G3BP2 in protecting endothelial barrier function, decreasing monocyte adhesion to ECs and inhibiting the proinflammatory cytokine levels. Furthermore, loss of G3BP2 diminished OSS-induced inflammation in ECs by increasing YAP nucleocytoplasmic shuttling and phosphorylation. These data demonstrate that G3BP2 is a critical OSS regulated gene in regulating ECs function and that G3BP2 inhibition in ECs is a promising atheroprotective therapeutic strategy.

7.
Curr Pharm Des ; 28(16): 1321-1328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35974674

RESUMEN

Hippo, an evolutionarily conserved kinase cascade reaction in organisms, can respond to a set of signals, such as mechanical signals and cell metabolism, to maintain cell growth, differentiation, tissue/organ development, and homeostasis. In the past ten years, Hippo has controlled the development of tissues and organs by regulating the process of cell proliferation, especially in the field of cardiac regeneration after myocardial infarction. This suggests that Hippo signaling is closely linked to cardiovascular disease. Atherosclerosis is the most common disease of the cardiovascular system. It is characterised by chronic inflammation of the vascular wall, mainly involving dysfunction of endothelial cells, smooth muscle cells, and macrophages. Oxidized Low density lipoprotein (LDL) damages the barrier function of endothelial cells, which enter the middle membrane of the vascular wall, accelerate the formation of foam cells, and promote the occurrence and development of atherosclerosis. Autophagy is associated with the development of atherosclerosis. However, the mechanism of Hippo regulation of atherosclerosis has not meant to be clarified. In view of the pivotal role of this signaling pathway in maintaining cell growth, proliferation, and differentiation, the imbalance of Hippo is related to atherosclerosis and related diseases. In this review, we emphasized Hippo as a hub for regulating atherosclerosis and discussed its potential targets in pathophysiology, human diseases, and related pharmacology.


Asunto(s)
Aterosclerosis , Células Endoteliales , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Células Espumosas/metabolismo , Humanos , Macrófagos/metabolismo , Transducción de Señal
8.
Nitric Oxide ; 127: 18-25, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839994

RESUMEN

Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in the body after NO and CO and plays an important organismal protective role in various diseases. Within adipose tissue, related catalytic enzymes (cystathionine-ß-synthetase, cystathionine-γ-lyase, and 3-mercaptopyruvate transsulfuration enzyme) can produce and release endogenous H2S. Atherosclerosis (As) is a pathological change in arterial vessels that is closely related to abnormal glucose and lipid metabolism and a chronic inflammatory response. Previous studies have shown that H2S can act on the cardiovascular system, exerting effects such as improving disorders of glycolipid metabolism, alleviating insulin resistance, protecting the function of vascular endothelial cells, inhibiting vascular smooth muscle cell proliferation and migration, regulating vascular tone, inhibiting the inflammatory response, and antagonizing the occurrence and development of As.


Asunto(s)
Aterosclerosis , Sulfuro de Hidrógeno , Tejido Adiposo/metabolismo , Aterosclerosis/patología , Cistationina gamma-Liasa/metabolismo , Células Endoteliales/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología
9.
DNA Cell Biol ; 41(3): 262-275, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35180350

RESUMEN

Inflammation is a double-edged sword. The moderate inflammatory response is a fundamental defense mechanism produced by the body's resistance to dangerous stimuli and a repair process of the body itself. Increasing studies have confirmed that the overactivation of the inflammasome is involved in the occurrence and development of inflammatory diseases. Strictly controlling the overactivation of the inflammasome and preventing excessive inflammatory response have always been the research focus on inflammatory diseases. However, the endogenous regulatory mechanism of inflammasome is not completely clear. The tripartite motif (TRIM) protein is one of the members of E3 ligases in the process of ubiquitination. The universality and importance of the functions of TRIM members are recognized, including the regulation of inflammatory response. This article will focus on research on the relationship between TRIMs and NLRP3 Inflammasome, which may help us make some references for future related research and the discovery of treatment methods.


Asunto(s)
Inflamasomas/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Proteínas de Motivos Tripartitos/fisiología , Animales , Inflamación/etiología , Inflamación/fisiopatología , Modelos Biológicos , Transducción de Señal/fisiología
10.
Mol Cell Biochem ; 477(1): 255-265, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34687394

RESUMEN

Diabetic cardiomyopathy (DCM) is a cardiovascular complication that tends to occur in patients with diabetes, obesity, or insulin resistance, with a higher late mortality rate. Sustained hyperglycemia, increased free fatty acids, or insulin resistance induces metabolic disorders in cardiac tissues and cells, leading to myocardial fibrosis, left ventricular hypertrophy, diastolic and/or systolic dysfunction, and finally develop into congestive heart failure. The close connection between all signaling pathways and the complex pathogenesis of DCM cause difficulties in finding effective targets for the treatment of DCM. It reported that hydrogen sulfide (H2S) could regulate cell energy substrate metabolism, reduce insulin resistance, protect cardiomyocytes, and improve myocardial function by acting on related key proteins such as differentiation cluster 36 (CD36) and glucose transporter 4 (GLUT4). In this article, the relative mechanisms of H2S in alleviating metabolic disorders of DCM were reviewed, and how H2S can better prevent and treat DCM in clinical practice will be discussed.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Metabolismo Energético , Sulfuro de Hidrógeno/metabolismo , Resistencia a la Insulina , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Humanos
11.
Cardiovasc Drugs Ther ; 35(5): 939-951, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32671602

RESUMEN

PURPOSE: Abdominal aortic aneurysm (AAA) is one of the leading causes of death in the developed world and is currently undertreated due to the complicated nature of the disease. Herein, we aimed to address the therapeutic potential of a novel class of pleiotropic mediators, specifically a new drug candidate, nitro-oleic acid (NO2-OA), on AAA, in a well-characterized murine AAA model. METHODS: We generated AAA using a mouse model combining AAV.PCSK9-D377Y induced hypercholesterolemia with angiotensin II given by chronic infusion. Vehicle control (PEG-400), oleic acid (OA), or NO2-OA were subcutaneously delivered to mice using an osmotic minipump. We characterized the effects of NO2-OA on pathophysiological responses and dissected the underlying molecular mechanisms through various in vitro and ex vivo strategies. RESULTS: Subcutaneous administration of NO2-OA significantly decreased the AAA incidence (8/28 mice) and supra-renal aorta diameters compared to mice infused with either PEG-400 (13/19, p = 0.0117) or OA (16/23, p = 0.0078). In parallel, the infusion of NO2-OA in the AAA model drastically decreased extracellular matrix degradation, inflammatory cytokine levels, and leucocyte/macrophage infiltration in the vasculature. Administration of NO2-OA reduced inflammation, cytokine secretion, and cell migration triggered by various biological stimuli in primary and macrophage cell lines partially through activation of the peroxisome proliferator-activated receptor-gamma (PPARγ). Moreover, the protective effect of NO2-OA relies on the inhibition of macrophage prostaglandin E2 (PGE2)-induced PGE2 receptor 4 (EP4) cAMP signaling, known to participate in the development of AAA. CONCLUSION: Administration of NO2-OA protects against AAA formation and multifactorial macrophage activation. With NO2-OA currently undergoing FDA approved phase II clinical trials, these findings may expedite the use of this nitro-fatty acid for AAA therapy.


Asunto(s)
Aneurisma de la Aorta Abdominal/fisiopatología , Activación de Macrófagos/efectos de los fármacos , Nitrocompuestos/farmacología , Ácidos Oléicos/farmacología , Angiotensina II/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
12.
Arterioscler Thromb Vasc Biol ; 40(10): 2494-2507, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787523

RESUMEN

OBJECTIVE: Currently, there are no approved drugs for abdominal aortic aneurysm (AAA) treatment, likely due to limited understanding of the primary molecular mechanisms underlying AAA development and progression. BAF60a-a unique subunit of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex-is a novel regulator of metabolic homeostasis, yet little is known about its function in the vasculature and pathogenesis of AAA. In this study, we sought to investigate the role and underlying mechanisms of vascular smooth muscle cell (VSMC)-specific BAF60a in AAA formation. Approach and Results: BAF60a is upregulated in human and experimental murine AAA lesions. In vivo studies revealed that VSMC-specific knockout of BAF60a protected mice from both Ang II (angiotensin II)-induced and elastase-induced AAA formation with significant suppression of vascular inflammation, monocyte infiltration, and elastin fragmentation. Through RNA sequencing and pathway analysis, we found that the expression of inflammatory response genes in cultured human aortic smooth muscle cells was significantly downregulated by small interfering RNA-mediated BAF60a knockdown while upregulated upon adenovirus-mediated BAF60a overexpression. BAF60a regulates VSMC inflammation by recruiting BRG1 (Brahma-related gene-1)-a catalytic subunit of the SWI/SNF complex-to the promoter region of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes. Furthermore, loss of BAF60a in VSMCs prevented the upregulation of the proteolytic enzyme cysteine protease CTSS (cathepsin S), thus ameliorating ECM (extracellular matrix) degradation within the vascular wall in AAA. CONCLUSIONS: Our study demonstrated that BAF60a is required to recruit the SWI/SNF complex to facilitate the epigenetic regulation of VSMC inflammation, which may serve as a potential therapeutic target in preventing and treating AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/prevención & control , Aortitis/prevención & control , Proteínas Cromosómicas no Histona/deficiencia , Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Remodelación Vascular , Animales , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Aortitis/genética , Aortitis/metabolismo , Aortitis/patología , Estudios de Casos y Controles , Catepsinas/metabolismo , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Transducción de Señal
13.
Circulation ; 142(5): 483-498, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32354235

RESUMEN

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease with a high mortality rate in the event of rupture. Pharmacological therapy is needed to inhibit AAA expansion and prevent aneurysm rupture. Transcription factor EB (TFEB), a master regulator of autophagy and lysosome biogenesis, is critical to maintain cell homeostasis. In this study, we aim to investigate the role of vascular smooth muscle cell (VSMC) TFEB in the development of AAA and establish TFEB as a novel target to treat AAA. METHODS: The expression of TFEB was measured in human and mouse aortic aneurysm samples. We used loss/gain-of-function approaches to understand the role of TFEB in VSMC survival and explored the underlying mechanisms through transcriptome and functional studies. Using VSMC-selective Tfeb knockout mice and different mouse AAA models, we determined the role of VSMC TFEB and a TFEB activator in AAA in vivo. RESULTS: We found that TFEB is downregulated in both human and mouse aortic aneurysm lesions. TFEB potently inhibits apoptosis in VSMCs, and transcriptome analysis revealed that TFEB regulates apoptotic signaling pathways, especially apoptosis inhibitor B-cell lymphoma 2. B-cell lymphoma 2 is significantly upregulated by TFEB and is required for TFEB to inhibit VSMC apoptosis. We consistently observed that TFEB deficiency increases VSMC apoptosis and promotes AAA formation in different mouse AAA models. Furthermore, we demonstrated that 2-hydroxypropyl-ß-cyclodextrin, a clinical agent used to enhance the solubility of drugs, activates TFEB and inhibits AAA formation and progression in mice. Last, we found that 2-hydroxypropyl-ß-cyclodextrin inhibits AAA in a VSMC TFEB-dependent manner in mouse models. CONCLUSIONS: Our study demonstrated that TFEB protects against VSMC apoptosis and AAA. TFEB activation by 2-hydroxypropyl-ß-cyclodextrin may be a promising therapeutic strategy for the prevention and treatment of AAA.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Aneurisma de la Aorta Abdominal/prevención & control , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Modelos Animales de Enfermedad , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Aminopropionitrilo/toxicidad , Aneurisma Roto/etiología , Angiotensina II/toxicidad , Animales , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Apoptosis/efectos de los fármacos , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/deficiencia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Colesterol/metabolismo , Regulación hacia Abajo , Evaluación Preclínica de Medicamentos , Mutación con Ganancia de Función , Regulación de la Expresión Génica , Vectores Genéticos/toxicidad , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Transcriptoma/efectos de los fármacos
14.
Clin Chim Acta ; 495: 358-364, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31075236

RESUMEN

Proprotein convertase subtilisin kexin 9 (PCSK9) regulates lipid metabolism by degrading low-density lipoprotein receptor on the surface of hepatocytes. PCSK9-mediated lipid degradation is associated with lipophagy. Lipophagy is a process by which autophagosomes selectively sequester lipid-droplet-stored lipids and are delivered to lysosomes for degradation. Lipophagy was first discovered in hepatocytes, and its occurrence provides important fundamental insights into how lipid metabolism regulates cellular physiology and pathophysiology. Furthermore, PCSK9 may regulate lipid levels by affecting lipophagy. This review will discuss recent advances by which PCSK9 mediates lipid degradation via the lipophagy pathway and present lipophagy as a potential therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Metabolismo de los Lípidos , Proproteína Convertasa 9/fisiología , Animales , Autofagia , Humanos
15.
Cardiovasc Diabetol ; 17(1): 134, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305178

RESUMEN

Perivascular adipose tissue (PVAT), the adipose tissue that surrounds most of the vasculature, has emerged as an active component of the blood vessel wall regulating vascular homeostasis and affecting the pathogenesis of atherosclerosis. Although PVAT characteristics resemble both brown and white adipose tissues, recent evidence suggests that PVAT develops from its own distinct precursors implying a closer link between PVAT and vascular system. Under physiological conditions, PVAT has potent anti-atherogenic properties mediated by its ability to secrete various biologically active factors that induce non-shivering thermogenesis and metabolize fatty acids. In contrast, under pathological conditions (mainly obesity), PVAT becomes dysfunctional, loses its thermogenic capacity and secretes pro-inflammatory adipokines that induce endothelial dysfunction and infiltration of inflammatory cells, promoting atherosclerosis development. Since PVAT plays crucial roles in regulating key steps of atherosclerosis development, it may constitute a novel therapeutic target for the prevention and treatment of atherosclerosis. Here, we review the current literature regarding the roles of PVAT in the pathogenesis of atherosclerosis.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Aterosclerosis/metabolismo , Vasos Sanguíneos/metabolismo , Mediadores de Inflamación/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Tejido Adiposo/fisiopatología , Adiposidad , Animales , Antiinflamatorios/uso terapéutico , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Aterosclerosis/prevención & control , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiopatología , Fármacos Cardiovasculares/uso terapéutico , Metabolismo Energético , Humanos , Factores Protectores , Factores de Riesgo , Transducción de Señal , Termogénesis
16.
Arterioscler Thromb Vasc Biol ; 38(8): 1738-1747, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29954752

RESUMEN

Objective- Perivascular adipose tissue (PVAT) contributes to vascular homeostasis by producing paracrine factors. Previously, we reported that selective deletion of PPARγ (peroxisome proliferator-activated receptor γ) in vascular smooth muscle cells resulted in concurrent loss of PVAT and enhanced atherosclerosis in mice. To address the causal relationship between loss of PVAT and atherosclerosis, we used BA-PPARγ-KO (brown adipocyte-specific PPARγ knockout) mice. Approach and Results- Deletion of PPARγ in brown adipocytes did not affect PPARγ in white adipocytes or vascular smooth muscle cells or PPARα and PPARδ expression in brown adipocytes. However, development of PVAT and interscapular brown adipose tissue was remarkably impaired, associated with reduced expression of genes encoding lipogenic enzymes in the BA-PPARγ-KO mice. Thermogenesis in brown adipose tissue was significantly impaired with reduced expression of thermogenesis genes in brown adipose tissue and compensatory increase in subcutaneous and gonadal white adipose tissues. Remarkably, basal expression of inflammatory genes and macrophage infiltration in PVAT and brown adipose tissue were significantly increased in the BA-PPARγ-KO mice. BA-PPARγ-KO mice were crossbred with ApoE KO (apolipoprotein E knockout) mice to investigate the development of atherosclerosis. Flow cytometry analysis confirmed increased systemic and PVAT inflammation. Consequently, atherosclerotic lesions were significantly increased in mice with impaired PVAT development, thus indicating that the lack of normal PVAT is sufficient to drive increased atherosclerosis. Conclusions- PPARγ is required for functional PVAT development. PPARγ deficiency in PVAT, while still expressed in vascular smooth muscle cell, enhances atherosclerosis and results in vascular and systemic inflammation, providing new insights on the specific roles of PVAT in atherosclerosis and cardiovascular disease at large.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , PPAR gamma/deficiencia , Adipocitos Marrones/patología , Tejido Adiposo Pardo/patología , Tejido Adiposo Pardo/fisiopatología , Tejido Adiposo Blanco/patología , Tejido Adiposo Blanco/fisiopatología , Adiposidad , Animales , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Mediadores de Inflamación/metabolismo , Lipogénesis/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , PPAR gamma/genética , Placa Aterosclerótica , Transducción de Señal , Termogénesis
17.
Circulation ; 138(1): 67-79, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29371216

RESUMEN

BACKGROUND: The perivascular adipose tissue (PVAT) surrounding vessels constitutes a distinct functional integral layer of the vasculature required to preserve vascular tone under physiological conditions. However, there is little information on the relationship between PVAT and blood pressure regulation, including its potential contributions to circadian blood pressure variation. METHODS: Using unique brown adipocyte-specific aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) and angiotensinogen knockout mice, we determined the vasoactivity of homogenized PVAT in aortic rings and how brown adipocyte peripheral expression of Bmal1 and angiotensinogen in PVAT regulates the amplitude of diurnal change in blood pressure in mice. RESULTS: We uncovered a peripheral clock in PVAT and demonstrated that loss of Bmal1 in PVAT reduces blood pressure in mice during the resting phase, leading to a superdipper phenotype. PVAT extracts from wild-type mice significantly induced contractility of isolated aortic rings in vitro in an endothelium-independent manner. This property was impaired in PVAT from brown adipocyte-selective Bmal1-deficient (BA-Bmal1-KO) mice. The PVAT contractile properties were mediated by local angiotensin II, operating through angiotensin II type 1 receptor-dependent signaling in the isolated vessels and linked to PVAT circadian regulation of angiotensinogen. Indeed, angiotensinogen mRNA and angiotensin II levels in PVAT of BA-Bmal1-KO mice were significantly reduced. Systemic infusion of angiotensin II, in turn, reduced Bmal1 expression in PVAT while eliminating the hypotensive phenotype during the resting phase in BA-Bmal1-KO mice. Angiotensinogen, highly expressed in PVAT, shows circadian expression in PVAT, and selective deletion of angiotensinogen in brown adipocytes recapitulates the phenotype of selective deletion of Bmal1 in brown adipocytes. Furthermore, angiotensinogen is a transcriptional target of Bmal1 in PVAT. CONCLUSIONS: These data indicate that local Bmal1 in PVAT regulates angiotensinogen expression and the ensuing increase in angiotensin II, which acts on smooth muscle cells in the vessel walls to regulate vasoactivity and blood pressure in a circadian fashion during the resting phase. These findings will contribute to a better understanding of the cardiovascular complications of circadian disorders, alterations in the circadian dipping phenotype, and cross-talk between systemic and peripheral regulation of blood pressure.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Tejido Adiposo Pardo/metabolismo , Angiotensinógeno/metabolismo , Aorta Torácica/metabolismo , Presión Sanguínea , Ritmo Circadiano , Sistema Renina-Angiotensina , Transcripción Genética , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Angiotensinógeno/deficiencia , Angiotensinógeno/genética , Animales , Presión Sanguínea/genética , Ritmo Circadiano/genética , Genotipo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Sistema Renina-Angiotensina/genética , Descanso , Transducción de Señal , Factores de Tiempo , Vasoconstricción
18.
Oncotarget ; 8(24): 38444-38455, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28404978

RESUMEN

We investigated the effects of aquaporin 5 (AQP5) gene silencing on the proliferation, migration and apoptosis of human glioma cells through regulating the EGFR/ERK/p38MAPK signaling pathway. qRT-PCR was applied to examine the mRNA expressions of AQP5 in five human glioma cell lines. U87-MG, U251 and LN229 cells were selected and assigned into blank, vector, AQP5 siRNA and FlagAQP5 groups. MTT assay was used to measure cell proliferation. Flow cytometry (FCM) with AnnexinV-FITC/PI double staining and PI staining were employed to analyze cell apoptosis and cell cycle respectively. Scratch test was used to detect cell migration. Western blotting was performed to determine the EGFR/ERK/p38 MAPK signaling pathway-related proteins. Results showed that the positive expression of AQP5 in primary glioblastoma was associated with the tumor size and whether complete excision was performed. The mRNA expressions of AQP5 in cell lines of U87-MG, U251 and LN229 were significantly higher than in U373 and T98G. The proliferation rates of U87-MG, U251 and LN229 cells in the AQP5 siRNA group were lower than in the vector and blank groups. The apoptosis rate increased in the AQP5 siRNA group compared with the vector group. Scratch test demonstrated that AQP5 gene silencing could suppress cell migration. Compared with the vector and blank groups, the AQP5 siRNA group showed decreased expressions of the ERK1/2, p38 MAPK, p-ERK1/2 and p-p38 MAPK proteins. AQP5 gene silencing could inhibit the cell proliferation, reduce cell migration and promote the cell apoptosis of U87-MG, U251 and LN229 by suppressing EGFR/ERK/p38 MAPK signaling pathway.


Asunto(s)
Acuaporina 5/metabolismo , Neoplasias Encefálicas/patología , Glioma/patología , Adulto , Anciano , Apoptosis/fisiología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Receptores ErbB/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Glioma/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Persona de Mediana Edad
19.
Front Physiol ; 8: 1032, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311966

RESUMEN

Background: Perivascular adipose tissue (PVAT), which surrounds most vessels, is de facto a distinct functional vascular layer actively contributing to vascular function and dysfunction. PVAT contributes to aortic remodeling by producing and releasing a large number of undetermined or less characterized factors that could target endothelial cells and vascular smooth muscle cells, and herein contribute to the maintenance of vessel homeostasis. Loss of PVAT in mice enhances atherosclerosis, but a causal relationship between PVAT and atherosclerosis and the possible underlying mechanisms remain to be addressed. The CDGSH iron sulfur domain 1 protein (referred to as mitoNEET), a mitochondrial outer membrane protein, regulates oxidative capacity and adipose tissue browning. The roles of mitoNEET in PVAT, especially in the development of atherosclerosis, are unknown. Methods: The brown adipocyte-specific mitoNEET transgenic mice were subjected to cold environmental stimulus. The metabolic rates and PVAT-dependent thermogenesis were investigated. Additionally, the brown adipocyte-specific mitoNEET transgenic mice were cross-bred with ApoE knockout mice. The ensuing mice were subsequently subjected to cold environmental stimulus and high cholesterol diet challenge for 3 months. The development of atherosclerosis was investigated. Results: Our data show that mitoNEET mRNA was downregulated in PVAT of both peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α)- and beta (Pgc1ß)-knockout mice which are sensitive to cold. MitoNEET expression was higher in PVAT of wild type mice and increased upon cold stimulus. Transgenic mice with overexpression of mitoNEET in PVAT were cold resistant, and showed increased expression of thermogenic genes. ApoE knockout mice with mitoNEET overexpression in PVAT showed significant downregulation of inflammatory genes and showed reduced atherosclerosis development upon high fat diet feeding when kept in a 16°C environment. Conclusion: mitoNEET in PVAT is associated with PVAT-dependent thermogenesis and prevents atherosclerosis development. The results of this study provide new insights on PVAT and mitoNEET biology and atherosclerosis in cardiovascular diseases.

20.
Mol Neurobiol ; 53(4): 2610-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26093379

RESUMEN

A glioma is the most common type of brain tumor that accounts for nearly 80 % of brain cancers. Vascular endothelial growth factor (VEGF) and its receptor, the kinase insert domain receptor (KDR), are involved in the angiogenesis of cancers. In this study, we investigate whether the polymorphisms of VEGF and KDR are associated with a glioma risk. Blood samples were collected from 477 glioma patients and 477 healthy controls. Five tag-single nucleotide polymorphisms (SNPs) of KDR were obtained from the HapMap database, and eight tag-SNPs of VEGF were selected based on previous studies. After extraction of genomic DNAs by a Qiagen DNA blood kit, the SNPs of VEGF and KDR were genotyped with a Sequenom MassArray iPLEX platform and further analyzed with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The odds ratios and their 95% confidence interval (95% CI) were used to assess the association between VEGF, KDR polymorphisms, and glioma risks with the aid of SPSS 13.0 software. The haplotype analysis demonstrated that two SNPs of VEGF [rs3025039 (C>T), rs2010963 (G>C)] could elevate the susceptibility to a glioma in the homozygous model [odds ratio (OR) = 3.13 (95% confidence interval (CI) 1.30-7.49, P = 0.007) and OR = 1.58 (95% CI 1.07-2.34, P = 0.022), respectively], dominant model [OR = 1.38 (95% CI 1.04-1.84, P = 0.025) and OR = 1.32 (95% CI 1.01-1.72, P = 0.043), respectively], and allelic model [OR = 1.43 (95% CI 1.11-1.84, P = 0.005) and OR = 1.24 (95% CI 1.04-1.50, P = 0.019), respectively]. Furthermore, three SNPs of KDR [rs7667298 (A>G), rs2305948 (C>T), rs1870377 (T>A)] were also assumed to be associated with an increased risk of a glioma in the homozygous [OR = 1.93 (95% CI 1.30-2.86, P = 0.001), OR = 2.56 (95% CI 1.28-5.11, P = 0.006), and OR = 1.52 (95% CI 1.00-2.31, P = 0.049), respectively], dominant [OR = 1.52 (95% CI 1.16-1.98, P = 0.002), OR = 1.41 (95% CI 1.05-1.87, P = 0.020), and OR = 1.48 (95% CI 1.13-1.93, P = 0.004), respectively], and allele models [OR = 1.39 (95% CI 1.15-1.67, P = 0.001), OR = 1.47 (95% CI 1.14-1.89, P = 0.002), and OR = 1.27 (95% CI 1.05-1.52, P = 0.013), respectively]. The genetic polymorphisms of VEGF [rs3025039 (C>T), rs2010963 (G>C)] and KDR [rs7667298 (A>G), rs2305948 (C>T), rs1870377 (T>A)] increased glioma susceptibility in a Chinese population, suggesting the possibility of VEGF and KDR as genetic markers for glioma. Additional functional and association studies with different ethnic groups included are needed to further confirm our results.


Asunto(s)
Pueblo Asiatico/genética , Etnicidad/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glioma/genética , Polimorfismo de Nucleótido Simple/genética , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Adulto , Neoplasias Encefálicas/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes/genética , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Persona de Mediana Edad , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...