Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17784, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853075

RESUMEN

In order to ensure the normal operation of rotating equipment, it is very important to quickly and efficiently diagnose the faults of anti-friction bearings. Hereto, fault diagnosis of anti-friction bearings based on Bi-dimensional ensemble local mean decomposition and optimized dynamic least square support vector machine (LSSVM) is presented in this paper. Bi-dimensional ensemble local mean decomposition, an extension of ensemble local mean decomposition from one-dimensional signal processing to Bi-dimensional signal processing, is used to extract the features of anti-friction bearings. Moreover, an optimized dynamic LSSVM is used to fault diagnosis of anti-friction bearings. The experimental results show that Bi-dimensional ensemble local mean decomposition is superior to Bi-dimensional local mean decomposition, optimized dynamic LSSVM is superior to traditional LSSVM, and the proposed Bi-dimensional ensemble local mean decomposition and optimized dynamic LSSVM method is effective for fault diagnosis of anti-friction bearings.

2.
PLoS One ; 15(10): e0241313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119656

RESUMEN

In recent years, deep learning (DL) networks have been widely used in super-resolution (SR) and exhibit improved performance. In this paper, an image quality assessment (IQA)-guided single image super-resolution (SISR) method is proposed in DL architecture, in order to achieve a nice tradeoff between perceptual quality and distortion measure of the SR result. Unlike existing DL-based SR algorithms, an IQA net is introduced to extract perception features from SR results, calculate corresponding loss fused with original absolute pixel loss, and guide the adjustment of SR net parameters. To solve the problem of heterogeneous datasets used by IQA and SR networks, an interactive training model is established via cascaded network. We also propose a pairwise ranking hinge loss method to overcome the shortcomings of insufficient samples during training process. The performance comparison between our proposed method with recent SISR methods shows that the former achieves a better tradeoff between perceptual quality and distortion measure than the latter. Extensive benchmark experiments and analyses also prove that our method provides a promising and opening architecture for SISR, which is not confined to a specific network model.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Redes Neurales de la Computación
3.
PLoS One ; 15(6): e0234775, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32555724

RESUMEN

Super-resolution (SR) technology provides a far promising computational imaging approach in obtaining a high-resolution (HR) image (or image sequences) from observed multiple low-resolution (LR) images by incorporating complementary information. In this paper, a three-stage SR method is proposed to generate a HR image from infrared (IR) LR Images acquired with Unmanned Aerial Vehicle (UAV). The proposed method integrates a high-level image capturing process and a low-level SR process. In this integrated process, we incorporate UAV path optimization, sub-pixel image registration, and sparseness constraint into a computational imaging framework of a region of interest (ROI). To refine ROI complementary feathers, we design an optimal flight control scheme to acquire adequate image sequences from multi-angles. In particular, a phase correlation approach achieving reliable sub-pixel image feature matching is adapted, on the basis of which an effective sparseness regularization model is built to enhance the fine structures of the IR image. Unlike most traditional multiple-frame SR algorithms that mainly focus on signal processing and achieve good performances when using standard test datasets, the performed experiments with real-life IR sequences indicate the three-stage SR method can also deal with practical LR IR image sequences collected by UAVs. The experimental results demonstrate that the proposed method is capable of generating HR images with good performance in terms of edge preservation and detail enhancement.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Rayos Infrarrojos , Relación Señal-Ruido , Algoritmos , Automatización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...