Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(1): e0170640, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28125650

RESUMEN

Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile.


Asunto(s)
Toxinas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Infecciones por Clostridium/prevención & control , Enterotoxinas/genética , Animales , Toxinas Bacterianas/toxicidad , Vacunas Bacterianas/genética , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/genética , Infecciones por Clostridium/microbiología , Cricetinae , Modelos Animales de Enfermedad , Enterotoxinas/toxicidad , Humanos , Macaca mulatta/microbiología , Mesocricetus/microbiología
2.
Methods Mol Biol ; 1403: 385-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27076142

RESUMEN

Clostridium difficile is a gram-positive bacterium responsible for a large proportion of nosocomial infections in the developed world. C. difficile secretes toxins A and B (TcdA and TcdB) and both toxins act synergistically to induce a spectrum of pathological responses in infected individuals ranging from pseudomembranous colitis to C. difficile-associated diarrhea. Toxins A and B have been actively investigated as components of prophylactic vaccine as well as targets for therapeutic intervention with antibodies. Expression of such toxins by recombinant technology is often difficult and may require special handling and adherence to strict safety regulations during the manufacturing process due to the inherent toxicity of the proteins. Both toxins are large proteins (308 kDa and 270 kDa, respectively) and contain distinct domains mediating cell attachment, cellular translocation, and enzymatic (glucosidase) activity. Here we describe methods to produce fragments of Toxin B for their subsequent evaluation as components of experimental C. difficile vaccines. Methods presented include selection of fragments encompassing distinct functional regions of Toxin B, purification methods to yield high quality proteins, and analytical evaluation techniques. The approach presented focuses on Toxin B but could be applied to the other component, Toxin A, and/or to any difficult to express or toxic protein.


Asunto(s)
Vacunas Bacterianas/inmunología , Infecciones por Clostridium/prevención & control , Animales , Antígenos Bacterianos/inmunología , Clostridioides difficile/inmunología , Infecciones por Clostridium/inmunología , Diseño de Fármacos , Humanos , Vacunas de Subunidad/inmunología
3.
Clin Vaccine Immunol ; 21(5): 689-97, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623624

RESUMEN

Clostridium difficile strains producing binary toxin, in addition to toxin A (TcdA) and toxin B (TcdB), have been associated with more severe disease and increased recurrence of C. difficile infection in recent outbreaks. Binary toxin comprises two subunits (CDTa and CDTb) and catalyzes the ADP-ribosylation of globular actin (G-actin), which leads to the depolymerization of filamentous actin (F-actin) filaments. A robust assay is highly desirable for detecting the cytotoxic effect of the toxin and the presence of neutralizing antibodies in animal and human sera to evaluate vaccine efficacy. We describe here the optimization, using design-of-experiment (DOE) methodology, of a high-throughput assay to measure the toxin potency and neutralizing antibodies (NAb) against binary toxin. Vero cells were chosen from a panel of cells screened for sensitivity and specificity. We have successfully optimized the CDTa-to-CDTb molar ratio, toxin concentration, cell-seeding density, and sera-toxin preincubation time in the NAb assay using DOE methodology. This assay is robust, produces linear results across serial dilutions of hyperimmune serum, and can be used to quantify neutralizing antibodies in sera from hamsters and monkeys immunized with C. difficile binary toxin-containing vaccines. The assay will be useful for C. difficile diagnosis, for epidemiology studies, and for selecting and optimizing vaccine candidates.


Asunto(s)
ADP Ribosa Transferasas/inmunología , Anticuerpos Neutralizantes/sangre , Proteínas Bacterianas/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Chlorocebus aethiops , Cricetinae , Macaca mulatta , Células Vero
4.
Vaccine ; 32(24): 2812-8, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24662701

RESUMEN

Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Clostridium/prevención & control , Enterocolitis Seudomembranosa/prevención & control , Enterotoxinas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Clostridioides difficile , Inmunoglobulina G/sangre , Masculino , Mesocricetus , Pruebas de Neutralización , Proteínas Recombinantes/inmunología , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...