Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712564

RESUMEN

Although acceptor-donor-acceptor (A-D-A)-type molecules offer advantages in constructing NIR absorbing photothermal agents (PTAs) due to their strong intramolecular charge transfer and molecular planarity, their applications in photothermal therapy (PTT) of tumors remain insufficiently explored. In particular, the influence of ESP distribution on the optical properties of A-D-A photosensitizers has not been investigated. Herein, we analyze and compare the difference in ESP distribution between A-D-A-type small molecules and polymers to construct NIR absorbing PTAs with a high extinction coefficient (ε) and high photothermal conversion efficiency (PCE). The calculation results of density functional theory (DFT) indicate that the large ESP difference makes A-D-A-type small molecules superior to their polymer counterparts in realizing tight molecular packing and strong NIR absorbance. Among the as-prepared nanoparticles (NPs), Y6 NPs exhibited an obvious bathochromic shift of absorption peak from 711 nm to 822 nm, with the NIR-II emission extended to 1400 nm. Moreover, a high ε value of 5.69 L g-1 cm-1 and a PCE of 66.3% were attained, making Y6 NPs suitable for PTT. With a concentration of 100 µg mL-1, Y6 NPs in aqueous dispersion yielded a death rate of 93.4% for 4T1 cells upon 808 nm laser irradiation (1 W cm-2) for 10 min, which is comparable with the best results of recently reported PTT agents.

2.
ACS Appl Mater Interfaces ; 16(3): 3744-3754, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38224058

RESUMEN

In the realm of organic solar cells (OSCs), the width of the depletion region at the anode interface is a critical factor that adversely impacts the open-circuit voltage (Voc) and the power conversion efficiency (PCE). To address this challenge, a novel approach involving a conjugated polyelectrolyte (CPE)-based composite, PCP-2F-Li:POM, has been developed. This composite serves as a solution-processed hole transport layer (HTL), effectively minimizing the depletion region width in high-performance OSCs. The innovative aspect of PCP-2F-Li:POM lies in its "mutual doping" mechanism. Polyoxometalate (POM) is utilized as a dopant, facilitating the formation of p-doped CPE and n-doped POM within the composite. This results in a substantial increase in doping density, nearly 2 orders of magnitude higher than that observed in unmodified CPE. Consequently, the width of depletion region is markedly reduced, shrinking from 76.4 to 6.0 nm. This reduction plays a pivotal role in enhancing hole transport via the tunneling effect. The practical impact of this development is notable. It leads to an increase in Voc from 0.84 to 0.86 V, thereby contributing significantly to an impressive PCE of 18.04% in OSCs. Moreover, the compatibility of PCP-2F-Li:POM with large-area processing techniques underscores its potential as a viable HTL material for future practical applications. Additionally, its contribution to the enhanced long-term stability of OSCs further bolsters its suitability for practical applications.

3.
ACS Nano ; 18(4): 3276-3285, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252155

RESUMEN

Although protonated polyoxometalates (POMs) are promising hole-transporting layer (HTL) materials for optoelectronic devices owing to their excellent hole collection/injection property, pH neutrality, and noncorrosiveness, POMs are seldom used as high-performance HTL materials. Herein, we designed and synthesized a series of mixed-additive POMs with pH-neutral counterions (NH4+, K+, and Na+) as HTL materials. X-ray photoelectron spectroscopy and single-crystal X-ray analyses indicated that the use of the lacunary heteropolyanion [P2W15O56]12- as an intermediate ensured successful incorporation of the counterions into the mixed-addenda POMs without causing deterioration of the POM frameworks. The hole-transporting layer performance of POM-NH4, which was characterized by a high work function and good conductivity and could be prepared using a low-cost method surpassed those of its protonated counterpart POM-4 and many classic HTL materials. An organic solar cell (OSC) modified with POM-NH4 delivered a power conversion efficiency of 18.0%, which was the highest photovoltaic efficiency achieved by POM-based OSCs to date. Moreover, an HTL material based on POM-NH4 reduced the turn-on voltage of an organic light-emitting diode from 4.2 to 3.2 V. The results of this study suggest that POMs are promising alternatives to the classic HTL materials owing to their excellent hole-collection ability, low costs, neutral nature, and high-chemical stability.

4.
Small ; 20(13): e2306668, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967328

RESUMEN

The large depletion region width at the electrode interface may cause serious energy loss in charge collection of organic solar cells (OSCs), depressing the open-circuit voltage and power conversion efficiency (PCE). Herein, a pH neutral solution-processed conjugated polyelectrolyte PIDT-F:IMC as hole transport layer (HTL) to reduce the depletion region width in efficient OSCs is developed. By utilizing "mutual doping" strategy, the doping density of PIDT-F:IMC is increased by more than two orders of magnitude, which significantly reduces the depletion region width at the anode interface from 55 to 7.4 nm, playing an effective role in decreasing the energy loss in hole collection. It is also revealed that the optimal thickness of HTL should be consistent with the depletion region width for achieving the minimum energy loss. The OSC modified by PIDT-F:IMC shows a high PCE of 18.2%, along with an amazing fill factor of 0.79. Moreover, a PCE of 16.5% is achieved in the 1 cm2 OSC by using a blade-coated PIDT-F:IMC HTL, indicating the good compatibility of PIDT-F:IMC with large-area processing technology. The PIDT-F:IMC-modified OCS exhibits a lifetime of 400 h under operational conditions, which is ten times longer than that of the PEDOT:PSS device.

5.
ACS Appl Mater Interfaces ; 16(1): 1225-1233, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112452

RESUMEN

Constructing high-performance solution-processed organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) conjugated polymers remains a challenging issue. The electron-withdrawing ability of acceptors in TADF units significantly affects the TADF properties of the conjugated polymers. Herein, we have designed three TADF conjugated polymers, in which phenoxazine donors and anthracen-9(10H)-one acceptors are incorporated into the polymeric backbones and side chains, respectively, and the carbazole derivative is copolymerized as the host. By incorporating different heteroatoms, such as nitrogen, oxygen, or sulfur, with slightly different electronegativities into anthracen-9(10H)-one, the effect of the electron-withdrawing ability of the acceptor on the performance of conjugated TADF polymer-based OLEDs is thus systematically studied. It is found that the introduction of a nitrogen atom can enhance the spin-orbital coupling and RISC process due to the modulated energy levels and nature of the excited states. As a result, the solution-processed OLEDs based on the prepared polymer p-PXZ-XN display an excellent comprehensive performance with an EQEmax of 17.6%, a low turn-on voltage of 2.8 V, and a maximum brightness of 14750 cd m-2. Notably, the efficiency roll-off is quite low, maintaining 15.1% at 1000 cd m-2, 12.1% at 3000 cd m-2, and 6.1% at 10000 cd m-2, which ranks in the first tier among the reported TADF conjugated polymers. This work provides a guideline for constructing high-efficiency TADF polymers.

6.
Adv Sci (Weinh) ; 10(34): e2304673, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37882326

RESUMEN

Cathode interlayers (CILs) play a crucial role in improving the photovoltaic efficiency and stability of OSCs. CILs generally consists of two kinds of materials, interfacial dipole-based CILs and SPS-based CILs. With good charge transporting ability, excellent compatibility with large-area processing methods, and highly tunable optoelectronic properties, the SPS-based CILs exhibit remarkable superiorities to their interfacial dipole-based counterparts in practical use, making them promising candidate in developing efficient CILs for OSCs. This mini-review highlights the great potential of SPS-based CILs in OSC applications and elucidates the working mechanism and material design strategy of SPS materials. Afterward, the SPS-based CIL materials are summarized and discussed in four sections, including organic small molecules, conjugated polymers, nonconjugated polymers, and TMOs. The structure-property-performance relationship of SPS-based CIL materials is revealed, which may provide readers new insight into the molecular design of SPS-based CILs. The mechanisms to endow SPS-based CILs with thickness insensitivity, resistance to environmental erosion, and photo-electric conversion ability are also elucidated. Finally, after a brief summary, the remaining issues and the prospects of SPS-based CILs are suggested.

7.
Angew Chem Int Ed Engl ; 62(35): e202307856, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37402633

RESUMEN

Air stable n-type conductive molecules with high electrical conductivities and excellent device performance have important applications in organic electronics, but their synthesis remains challenging. Herein, we report three self-doped n-type conductive molecules, designated QnNs, with a closed-shell quinoidal backbone and alkyl amino chains of different lengths. The QnNs are self-doped by intermolecular electron transfer from the amino groups to the quinoidal backbone. This process is ascertained unambiguously by experiments and theoretical calculations. The use of a quinoidal structure effectively improves the self-doping level, and thus increases the electrical conductivity of self-doped n-type conductive molecules achieved by a closed-shell structure from<10-4  S cm-1 to>0.03 S cm-1 . Furthermore, the closed-shell quinoidal structure results in good air stability of the QnNs, with half-lives>73 days; and Q4N shows an electrical conductivity of 0.019 S cm-1 even after exposure to air for 120 days. When applying Q6N as the cathode interlayer in organic solar cells (OSCs), an outstanding power conversion efficiency of up to 18.2 % was obtained, which represents one the best results in binary OSCs.

8.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903368

RESUMEN

The delivery of biocompatible reagents into cancer cells can elicit an anticancer effect by taking advantage of the unique characteristics of the tumor microenvironment (TME). In this work, we report that nanoscale two-dimensional FeII- and CoII-based metal-organic frameworks (NMOFs) of porphyrin ligand meso-tetrakis (6-(hydroxymethyl) pyridin-3-yl) porphyrin (THPP) can catalyze the generation of hydroxyl radicals (•OH) and O2 in the presence of H2O2 that is overexpressed in the TME. Photodynamic therapy consumes the generated O2 to produce a singlet oxygen (1O2). Both •OH and 1O2 are reactive oxygen species (ROS) that inhibit cancer cell proliferation. The FeII- and CoII-based NMOFs were non-toxic in the dark but cytotoxic when irradiated with 660 nm light. This preliminary work points to the potential of porphyrin-based ligands of transition metals as anticancer drugs by synergizing different therapeutic modalities.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Estructuras Metalorgánicas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Femenino , Estructuras Metalorgánicas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Porfirinas/farmacología , Peróxido de Hidrógeno/farmacología , Ligandos , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Compuestos Ferrosos/farmacología , Fármacos Fotosensibilizantes/farmacología , Microambiente Tumoral
9.
Adv Mater ; 34(43): e2207009, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36070897

RESUMEN

The correlation between molecular structure and photovoltaic performance is lagging for constructing high-performance indoor organic photovoltaic (OPV) cells. Herein, this relationship is investigated in depth by employing two medium-bandgap nonfullerene acceptors (NFAs). The newly synthesized NFA of FTCCBr exhibits a similar bandgap and molecular energy level, but a much stronger dipole moment and larger average electrostatic potential (ESP) compared with ITCC. After blending with the polymer donor PB2, the PB2:ITCC and PB2:FTCCBr blends exhibit favorable bulk-heterojunction morphologies and the same driving force, but the PB2:FTCCBr blend exhibits a large ESP difference. In OPV cells, the PB2:ITCC-based device produces a power conversion efficiency (PCE) of 11.0%, whereas the PB2:FTCCBr-based device gives an excellent PCE of 14.8% with an open-circuit voltage (VOC ) of 1.05 V, which is the highest value among OPV cells with VOC values above 1.0 V. When both acceptor-based devices work under a 1000 lux of 3000 K light-emitting diode, the PB2:ITCC-based 1 cm2 device yields a good PCE of 25.4%; in contrast, the PB2:FTCCBr-based 1 cm2 device outputs a record PCE of 30.2%. These results suggest that a large ESP offset in photovoltaic materials is important for achieving high-performance OPV cells.

10.
JACS Au ; 2(8): 1918-1928, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36032525

RESUMEN

With the photovoltaic efficiency of organic solar cells (OSCs) exceeding 17%, improving the stability of these systems has become the most important issue for their practical applications. In particular, moisture in the environment may erode the interlayer molecules, which has been proved to be the main reason for the efficiency decay. At present, the development of moisture-resistant interlayer molecules remains a great challenge to the field. Herein, we designed two naphthalene diimide (NDI)-based organic compounds, namely, NDI-M and NDI-S, exhibiting suitable energy level and excellent electron extraction property. In addition to this, NDI-S has extremely low hygroscopicity. An efficiency of 17.27% was achieved for the NDI-S inverted cells, and the long-term stability under continuous illumination conditions was significantly improved with a T80 lifetime (the time required to reach 80% of initial performance) of over 28 000 h. More importantly, we demonstrated that, by using a covalent bond to link the counter ions with the host molecular structure in the zwitterion, the asymmetric molecule NDI-S can transform from amorphous to crystalline hydrate at high humidity and exhibited outstanding non-hygroscopic nature; this could decrease the interaction between the cell and the moisture, obviously improving the device stability under high humidity.

11.
Medicine (Baltimore) ; 101(30): e29961, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35905284

RESUMEN

INTRODUCTION: The present study was conducted to determine the association of transforming growth factor-beta (TGF-ß) gene polymorphism and myopia. METHOD: Four hundred twelve articles were identified, of which 11 articles with 5213 participants in 4 countries were included in the final analysis. Review Manager software (RevMan, version 5.4) was used for data analysis. RESULT: Odds ratio (OR) value of TGF-ß1 rs1800469 is 1.33 (95% confidence interval [CI] = 1.15-1.54) in the allelic model; in the dominant model is 1.76 (95% CI = 1.16-2.67); in homozygous model is 5.98 (95% CI = 4.31-8.06). OR value of TGF-ß1 rs4803455 is 0.62 (95% CI = 0.43-0.88) in recessive model. TGF-ß2 is not associated with myopia. Relevant study on TGF-ß3 is scarce. CONCLUSION: Our systematic review and meta-analysis found that TGF-ß1 rs4803455 and rs1800469 were correlated with myopia.


Asunto(s)
Miopía , Factor de Crecimiento Transformador beta1/uso terapéutico , Alelos , Predisposición Genética a la Enfermedad , Humanos , Miopía/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Factor de Crecimiento Transformador beta1/genética
12.
Adv Mater ; 34(17): e2200044, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35236010

RESUMEN

Developing indium-tin-oxide (ITO)-free flexible organic photovoltaics (OPVs) with upscaling capacity is of great significance for practical applications of OPVs. Unfortunately, the efficiencies of the corresponding devices lag far behind those of ITO-based rigid small-area counterparts. To address this issue, an advanced device configuration is designed and fabricated featuring a top-illuminated structure with ultrathin Ag as the transparent electrode. First, a conjugated polyelectrolyte layer, i.e., PCP-Li, is inserted to effectively connect the bottom Ag anode and the hole transport layer, achieving good photon to electron conversion. Second, charge collecting grids are deposited to suppress the increased resistance loss with the upscaling of the device area, realizing almost full retention of device efficiency from 0.06 to 1 cm2 . Third, the designed device delivers the best efficiency of 15.56% with the area of 1 cm2 on polyimide substrate, representing as the record among the ITO-free, large-area, flexible OPVs. Interestingly, the device exhibits no degradation after 100 000 bending cycles with a radius of 4 mm, which is the best result for flexible OPVs. This work provides insight into device structure design and optimization for OPVs with high efficiency, low cost, superior flexibility, and upscaling capacity, indicating the potential for the future commercialization of OPVs.

13.
Adv Mater ; 34(3): e2106453, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34734444

RESUMEN

As a representative electron transporting layer in organic solar cells, zinc oxide (ZnO) can be fabricated by the meniscus-guided coating with the promotion of sol-gel technology. In order to fabricate stable and flexible organic solar cells (OSCs) based on the printable ZnO layers, here, a new method for simultaneously manipulating fluidics of the sol-gel ZnO precursor and optimizing processability of the ZnO layer for flexible OSCs is developed. It is found that the Marangoni recirculation in meniscus and the annealing temperature of the sol-gel ZnO precursor can be effectively modulated by changing the Lewis base. With the use of propylamine, the high-quality ZnO layer that is suitable for flexible OSCs can be fabricated through blade coating. Under such a condition, the formation of polar facet in ZnO layer is well restrained, which favors the photostability of the cells. As a result, the best 1.00 cm2 flexible cell outputs a power conversion efficiency of 16.71%, which is the best value till now.

14.
Dalton Trans ; 49(36): 12622-12631, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32870218

RESUMEN

Four coordination polymers (CPs) Mn-TMPP (1), Zn-TMPP (2), Mn-THPP (3), and Zn-THPP (4) have been synthesized and characterized (H2TMPP = meso-tetrakis (6-methylpyridin-3-yl) porphyrin; H2THPP = meso-tetrakis (6-(hydroxymethyl) pyridin-3-yl) porphyrin). The one-dimensional (1D) chain compound 1 is formed via a head-to-tail connection of the Mn-TMPP unit, wherein the central Mn2+ features a square pyramidal geometry coordinated by four N atoms from the porphyrin skeleton and one additional N atom from an adjacent Mn-TMPP unit. Compound 2 features an octahedral Zn2+ center associated with four N atoms from the porphyrin skeleton to define the equatorial plane and two additional N donors at the axial positions to give a two-dimensional (2D) CP. The 1D chain of 1 and the 2D layer of 2 possess distinctive molecular structures but nearly identical molecular arrangements in their unit cells viewed along all three crystallographic axes. By contrast, Mn- and Zn-based CPs 3 and 4 supported by the THPP ligand share both identical molecular connectivities and crystal packing. In 3/4, each Mn/Zn center is chelated by four N donors of the porphyrin interior to define the equatorial plane of an octahedron, whose axial sites are occupied by two alcoholic OH groups from a pair of trans-located pyridinemethanol moieties. The third-order nonlinear optical properties of 1-4 investigated using the Z-scan technique at 532 nm revealed reverse saturable absorption and self-focusing effects for all four CPs, with hyperpolarizability values (γ) in the range 1.42 × 10-28 esu to 7.64 × 10-28 esu. These high γ values are comparable to the best porphyrin-based molecular assemblies, demonstrating potential for these materials in optical limiting applications.

15.
ACS Appl Mater Interfaces ; 12(35): 39462-39470, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805890

RESUMEN

The development of electrode interlayers for hole extraction is a great challenge in the field of organic solar cells (OSCs). At present, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is the only solution-processed anode interlayer (AIL) that can be used to achieve power conversion efficiencies (PCEs) over 15% in OSC devices, even though there are several well-known drawbacks in practical applications of PEDOT:PSS. Herein, we use an inorganic molecular cluster (IMC) as the AIL for making highly efficient and large-area OSCs. The IMC possesses several advantages in serving as the AIL, such as neutral pH, excellent optical transmittance, high work function, good film-forming properties, and low cost. OSCs using the IMC can achieve a high PCE of 13.38%, which is superior to the PCE of the PEDOT:PSS device. This is among the few examples of OSC devices with solution-processed and pH neutral AILs showing higher PCE than PEDOT:PSS devices. Ultraviolet photoelectron spectroscopy and electron spin resonance results indicate the formation of inorganic-organic heterojunction, which is crucial for efficient hole extraction. More importantly, the IMC is compatible with printing processing. Using a blade-coated IMC film, we fabricated a large-area OSC of 1 cm2 and a high PCE of 9.5% was achieved.

16.
ACS Appl Mater Interfaces ; 12(26): 29505-29512, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32508081

RESUMEN

Recent works demonstrate that polyelectrolytes as a hole transport layer (HTL) offers superior performance in Ruddlesden-Popper perovskite solar cells (RPPSCs) compared to poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The factors contributing to such improvement need to be systematically investigated. To achieve this, we have systematically investigated how the two HTLs affect the morphology, crystallinity, and orientation of the Ruddlesden-Popper perovskite (RPP) films as well as the charge extraction of the RPPSCs. PEDOT:PSS as a HTL leads to RPP films of low crystallinity and with a number of large pinholes. These factors lead to poor charge carrier extraction and significant charge recombination in the RPPSCs. Conversely, a PCP-Na HTL gives rise to highly crystalline and pinhole-free RPPSC films. Moreover, a PCP-Na HTL provides a better energy alignment at the perovskite/HTL interface because of its higher work function compared to PEDOT:PSS. Consequently, devices using PCP-Na as HTLs are more efficient in extracting charge carriers.

17.
Molecules ; 25(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392885

RESUMEN

A heterometallic metal-organic framework (MOF) of [Cd6Ca4(BTB)6(HCOO)2(DEF)2(H2O)12]∙DEF∙xSol (1, H3BTB = benzene-1,3,5-tribenzoic acid; DEF = N,N'-diethylformamide; xSol. = undefined solvates within the pore) was prepared by solvothermal reaction of Cd(NO3)2·4H2O, CaO and H3BTB in a mixed solvent of DEF/H2O/HNO3. The compatibility of these two divalent cations from different blocks of the periodic table results in a solid-state structure consisting of an unusual combination of a discrete V-shaped heptanuclear cluster of [Cd2Ca]2Ca' and an infinite one-dimensional (1D) chain of [Cd2CaCa']n that are orthogonally linked via a corner-shared Ca2+ ion (denoted as Ca'), giving rise to an unprecedented branched-chain secondary building unit (SBU). These SBUs propagate via tridentate BTB to yield a three-dimensional (3D) structure featuring a corner-truncated P41 helix in MOF 1. This outcome highlights the unique topologies possible via the combination of carefully chosen s- and d-block metal ions with polydentate ligands.


Asunto(s)
Estructuras Metalorgánicas/química , Compuestos Organometálicos/química , Ácido Benzoico/química , Compuestos de Cadmio/química , Calcio/química , Cristalografía por Rayos X , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Ligandos , Estructuras Metalorgánicas/síntesis química , Modelos Moleculares , Estructura Molecular , Nitratos/química , Solventes/química , Agua/química
18.
Chem Commun (Camb) ; 56(44): 5877-5880, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32364556

RESUMEN

Crystals of a two-dimensional (2D) metal-organic framework (MOF) [Cd3(BTB)2(DEF)4]·2(DEF)0.5 (1; BTB = benzene-1,3,5-tribenzolate; DEF = N,N'-diethylformamide) immersed in a solution of trans-1,2-bis(4-pyridyl)ethylene (BPEE) yields an interpenetrated three-dimensional (3D) MOF of [Cd3(BTB)2(BPEE)(H2O)2]·(BPEE)·xSol (2). Crystals of MOF 2, in turn, undergo a cascade conversion when immersed in DEF, yielding [Cd3(BTB)2(BPEE)1.8(DEF)0.9(H2O)0.8]·xSol (3a) over 100 seconds and [Cd3(BTB)2(BPEE)2(DEF)2]·xSol (4) after one hour, before finally shuttling back to MOF 1 after six hours.

19.
ACS Appl Mater Interfaces ; 12(21): 24184-24191, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32367720

RESUMEN

Nonradiative recombination energy loss (ΔE3) plays a key role in enhancing device efficiencies for polymer solar cells (PSCs). Until now, there is no clear resolution for reducing ΔE3 via molecular design. Herein, we report two conjugated polymers, PBDB-P-p and PBDB-P-m, which are integrated from benzo[1,2-b:4,5-b']dithiophene with alkylthio chain substituted at para- or meta-position on pendent benzene and benzo[1,2-c:4,5-c']dithiophene-4,8-dione. Both the polymers have different temperature-dependent aggregation properties but similar molecular energy levels. When BO-4Cl was used as an acceptor to fabricate PSCs, the device of PBDB-P-p:BO-4Cl displayed a maximal power conversion efficiency (PCE) of 13.83%, while the best device of PBDB-P-m:BO-4Cl exhibited a higher PCE of 14.12%. The close JSCs and fill factors in both PSCs are attributed to their formation of effective nanoscale phase separation as confirmed by atomic force microscopy measurements. We find that the PBDB-P-m-based device has 1 order of magnitude higher electroluminescence quantum efficiency (EQEEL) than in the PBDB-P-p-based one, which could arise from the relatively weak aggregation in the PBDB-P-m-based film. Thus, the PBDB-P-m-based device has a remarkably enhanced VOC of 0.86 V in contrast to 0.80 V in the PBDB-P-p-based device. This study offers a feasible structural optimization way on the alkylthio side chain substitute position on the conjugated polymer to enhance VOC by reducing nonradiative recombination energy loss in the resulting PSCs.

20.
Phys Rev E ; 102(6-1): 063211, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33466021

RESUMEN

A laser plasma wake field in a single-color femtosecond laser filament determines the acceleration of ionized electrons, which affects the intensity and bandwidth of the emitted terahertz wave and is important for understanding the fundamental nonlinear process of THz generation. Since the THz wave generated by a laser wake field is extremely small and easily hidden by other THz generation mechanisms, no method exists to measure this wake field directly. In this paper, a simple and stable method for determining the amplitude of the laser plasma wake field is presented. Based on the cancellation of a positive laser plasma wake field and an external negative electric field, the "zero point" of the intensity of the generated THz wave at some frequency can be used to determine the exact amplitude of the corresponding laser plasma wake field. This finding opens an avenue toward the clarification of ultrafast electronic dynamic processes in laser-induced plasmas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...