Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1431988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188374

RESUMEN

Objective: This study aims to investigate the plantar biomechanics of healthy young males as they descend a single transition step from varying heights. Methods: Thirty healthy young males participated the experiment using the F-scan insole plantar pressure system in which participants made single transition steps descent from four step heights (5, 15, 25, and 35 cm), leading with their dominant or non-dominant foot. Plantar pressure data were collected for 5 s during the period between landing touchdown and standing on the ground. Landing at each step height was repeated three times, with a five-minute rest between different height trials. Results: At 5 cm and 15 cm steps, participants demonstrated a rearfoot landing strategy on both sides. However, forefoot contact was observed at heights of 25 cm and 35 cm. Parameters related to center of plantar pressure (COP) of the leading foot were significantly larger compared to the trailing foot (P < 0.001), increased with higher step heights. Vertical ground reaction forces for the biped, leading and trailing feet decreased with increasing step height (all P < 0.05). The leading foot had a higher proportion of overall and forefoot loads, and a lower proportion of rearfoot load compared to the trailing foot (P < 0.001). The overall load on the dominant side was lower than that on the non-dominant side for both the leading and trailing feet (P < 0.001). For the trailing foot, forefoot load on the dominant side was lower than that on the non-dominant side, however, the opposite result appeared in rearfoot load (P < 0.001). Upon the leading foot landing, forefoot load exceeded the rearfoot load for the dominant (P < 0.001) and non-dominant sides (P < 0.001). Upon the trailing foot landing, forefoot load was lower than the rearfoot load for the dominant (P < 0.001) and non-dominant sides (P = 0.019). Conclusion: When the characteristics of biomechanical stability are compromised by step height, landing foot, and footedness factors - due to altered foot landing strategies, changing COP, or uneven force distribution - ability to control motion efficiently and respond adaptively to the forces experienced during movement is challenged, increasing the likelihood of loss of dynamic balance, with a consequent increased risk of ankle sprains and falls.

2.
Front Bioeng Biotechnol ; 12: 1372679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699433

RESUMEN

Background: Knee osteoarthritis (KOA) is a common musculoskeletal condition that affects dynamic balance control and increases the risk of falling during walking. However, the mechanisms underlying this are still unclear. Diminished ankle proprioception during walking has been found to be related to fear of falling in older adults, with a gender difference in incidence of falling. This study aimed to determine 1) whether ankle inversion proprioceptive acuity during walking is impaired in patients with KOA; and 2) whether there is any difference between genders. Methods: Thirty-two patients with KOA (F:M = 17:15, Median age = 52.5, BMI = 22.3 ± 3.0) and 34 healthy controls without KOA (HC) (F:M = 17:17; median age = 49.0, BMI = 22.5 ± 2.7) were recruited. In patients with KOA, ankle inversion proprioceptive acuity was measured on the affected side using the ankle inversion discrimination apparatus for walking (AIDAW), whilst HC were assessed on a randomly selected side. Two-way (2*2) analysis of variance (ANOVA) was performed to determine the main effects and interaction between gender and KOA condition. Results: Two-way ANOVA showed a significant KOA main effect (F = 26.6, p < 0.001, ƞp 2 = 0.3) whereby AIDAW scores during walking for individuals with KOA were significantly lower than those without KOA (KOA vs. HC: 0.746 ± 0.057 vs. 0.807 ± 0.035). There was neither a gender main effect nor interaction (both p > 0.05). Conclusion: Individuals with KOA demonstrated lower ankle proprioception scores during walking compared to their healthy counterparts, with a similar level of impairment in ankle proprioceptive acuity between male and female patients. A low score may contribute to an increased risk of falling in the KOA population. The current findings suggest the need for global concern about lower limb proprioception in the clinical management of KOA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA