Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cancer ; 15(7): 1816-1825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434983

RESUMEN

Objective: Vasculogenic mimicry (VM) generates an important supplementary form of blood supply in cancer, which many factors regulate. However, the effect of lysyl oxidase (LOX) on VM formation is unclear. In this study, gastric cancer tissues and cells were used to investigate the role of LOX in the formation of VM. Materials and Methods: The samples were collected from 49 patients with a final diagnosis of gastric cancer. According to metastasis (including lymph node metastases and distant metastases), gastric cancer samples were divided into metastasis and non-metastasis groups. Based on the degree of invasion, gastric cancer specimens were divided into T1 + T2 and T3 + T4 groups. The relative expression of LOX was detected using Western blot. The formation of VM was measured by double staining with CD34 and Periodic acid-Schiff (PAS) in gastric cancer tissue slices, and the correlation between LOX and VM was analyzed with Pearson's correlation analysis. Gastric cancer cell line BGC-803 was treated with LOX, ß-aminopropionitrile (BAPN, an inhibitor of LOX), and AG1295 or AG1296 (inhibitors of the platelet-derived growth factor receptor). The formation of VM was then measured using PAS staining. The expression of platelet-derived growth factor receptor (PDGFR)α and PDGFRß in gastric cancer cells was detected by Western blot. Results: In gastric cancer samples, the level of LOX was higher in the metastasis group than in the non-metastasis group (P < 0.05) and in the T3 + T4 group than in the T1 + T2 group (P < 0.05). VM formation was greater in the T3+T4 group than in the T1+T2 group (P < 0.05) and in the metastasis group than in the non-metastasis group (P < 0.05). The expression level of LOX was positively correlated with VM formation (P < 0.01). In gastric cancer cells, LOX concentration was positively correlated with the degree of VM, and BAPN concentration was negatively correlated with the degree of VM (P <0.05). PDGFR levels in the T3+T4 and metastasis groups were relatively higher (P <0.01) and positively correlated with LOX levels in gastric cancer specimens (P < 0.01). The relative expression of PDGFRα and PDGFRß in gastric cancer cells was up-regulated with increasing LOX and downregulated with increasing BAPN (P < 0.05). With inhibition of PDGFRα and PDGFRß using AG1295 or AG1296, VM formation in gastric cancer cells decreased (P <0.05), but the number of VM structures increased while LOX was added (P < 0.05). Conclusion: LOX partially promotes the formation of VM in gastric cancer through the PDGF-PDGFR signaling pathway.

2.
Chem Asian J ; 19(9): e202301130, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38445562

RESUMEN

With the demand of develop outstanding-performance energetic materials, 1-(dinitromethyl)-4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (DNM-TNBI) emerged as a great contender (D: 9102 m ⋅ s-1; P: 37.6 GPa). However, the relatively poor thermal stability (Td: 142 °C) limits its practical application. In this study, DNM-TNBI as a host molecule to synthesize two new energetic open-framework materials by effectively coordinated with different cations. Their supramolecular structures were investigated and indicated that [DNM-TNBI2 -][2NH4 +] and [DNM-TNBI2 -][2K+] can be classified as a new energetic hydrogen-bonded ammonium framework (EHAF) and an energetic metal organic framework (EMOF). Meanwhile, their thermal stabilities are higher than that of DNM-TNBI and have satisfactory detonation performance ([DNM-TNBI2 -][2NH4 +], D: 8050 m ⋅ s-1, P: 26.4 GPa; [DNM-TNBI2 -][2K+], D: 8301 m ⋅ s-1, P: 30.8 GPa).

3.
Micromachines (Basel) ; 11(4)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295292

RESUMEN

In order to improve the mechanical strength of micro-booster based on 3,4-dinitrofurazanofuroxan (DNTF), 2,4-toluene diisocyanate (TDI) was introduced into the composite binder of nitrocotton (NC) and glycidyl azide polymer (GAP). A full-liquid explosive ink containing DNTF, binder and solvent was printed layer by layer. By the polymer cross-linking technology, the inkjet printed sample with three-dimensional network structure was obtained. The morphology, crystal form, density, mechanical strength, thermal decomposition and micro scale detonation properties of the printed samples were tested and analyzed. The results show that the printed sample has a smooth surface and a dense internal microstructure, and the thickness of the single layer printing is less than 10 µm. Compared with the raw material DNTF, the thermal decomposition temperature and activation energy of the printed samples do not change significantly, indicating better thermal stability. The addition of curing agent TDI increases the mechanical properties and charge density of the energetic composites. The elastic modulus and hardness are increased by more than 20%. The charge density can attain 1.773 g·cm-3, which can reach 95.5% of the theoretical density. The critical detonation size of the sample can reach 1 mm × 0.01 mm or less and the detonation velocity can achieve 8686 m·s-1, which exhibits excellent micro-scale detonation ability.

4.
RSC Adv ; 8(63): 35863-35869, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-35558497

RESUMEN

To explore a new manufacturing method in preparing energetic composites, an inkjet printing device possessing the ability of high precision and flexibility was utilized to deposit six 3,4-dinitrofurazanofuroxan (DNTF) and hexogen (RDX) based explosive inks. The printed quality, inner structure, printed density and crystal morphology of energetic composites were tested, as well as their thermal decomposition properties and detonation properties. The results indicate that inkjet printing provides a good formation uniformity for explosive inks. Interestingly, all energetic composites exhibit excellent printed density with all values higher than 90% theoretical maximum density (TMD). Meanwhile, the composite DNTF/RDX/EC/GAP (54/36/5/5) performs best, reaching 96.88% TMD, which has reached a new height in the three-dimensional printing of energetic composites. Further study manifests that there is no appearance of new material, and the stacking manner of rodlike structures in multilayer manufacturing is the key to achieving such an amazing result. The particles in the energetic composites are spherical with the size ranging from 500 nm to 2 µm and connect with each other closely in the matrix of binders. Moreover, the energetic composites that were directly deposited into wedge channels display a good capability in steadily detonating above the size of 1 × 0.32 mm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...