Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506334

RESUMEN

Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.

2.
Rice (N Y) ; 17(1): 12, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310612

RESUMEN

BACKGROUND: Hybrid rice has significant yield advantage and stress tolerance compared with inbred rice. However, production of hybrid rice seeds requires extensive manual labors. Currently, hybrid rice seeds are produced by crosspollination of male sterile lines by fertile paternal lines. Because seeds from paternal lines can contaminate the hybrid seeds, mechanized production by mixed-seeding and mixed-harvesting is difficult. This problem can be solved if the paternal line is female sterile. RESULTS: Here we identified a female infertile mutant named h569 carrying a novel mutation (A1106G) in the MEL2 gene that was previously reported to regulate meiosis entry both in male and female organs. h569 mutant is female infertile but male normal, suggesting that MEL2 regulates meiosis entry in male and female organs through distinct pathways. The MEL2 gene and h569 mutant gave us tools to construct female sterility maintaining systems that can be used for propagation of female sterile lines. We connected the wild-type MEL2 gene with pollen-killer gene ZmAA1 and seed-marker gene DsRed2 in one T-DNA cassette and transformed it into ZZH1607, a widely used restorer line. Transgenic line carrying a single transgene inserted in an intergenic region was selected to cross with h569 mutant. F2 progeny carrying homozygous A1106G mutation and hemizygous transgene displayed 1:1 segregation of fertile and infertile pollen grains and 1:1 segregation of fluorescent and non-fluorescent seeds upon self-fertilization. All of the non-fluorescent seeds generated female infertile plants, while the fluorescent seeds generated fertile plants that reproduced in the way as their previous generation. CONCLUSIONS: These results indicated that the female sterility maintaining system constructed in the study can be used to breed and propagate paternal lines that are female infertile. The application of this system will enable mechanized production of hybrid rice seed by using the mixed-seeding and mixed harvesting approach, which will significantly reduce the cost in hybrid rice seed production.

3.
BMC Plant Biol ; 23(1): 465, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798654

RESUMEN

BACKGROUND: The P-stalk is a conserved and vital structural element of ribosome. The eukaryotic P-stalk exists as a P0-(P1-P2)2 pentameric complex, in which P0 function as a base structure for incorporating the stalk onto 60S pre-ribosome. Prior studies have suggested that P0 genes are indispensable for survival in yeast and animals. However, the functions of P0 genes in plants remain elusive. RESULTS: In the present study, we show that rice has three P0 genes predicted to encode highly conserved proteins OsP0A, OsP0B and OsP0C. All of these P0 proteins were localized both in cytoplasm and nucleus, and all interacted with OsP1. Intriguingly, the transcripts of OsP0A presented more than 90% of the total P0 transcripts. Moreover, knockout of OsP0A led to embryo lethality, while single or double knockout of OsP0B and OsP0C did not show any visible defects in rice. The genomic DNA of OsP0A could well complement the lethal phenotypes of osp0a mutant. Finally, sequence and syntenic analyses revealed that OsP0C evolved from OsP0A, and that duplication of genomic fragment harboring OsP0C further gave birth to OsP0B, and both of these duplication events might happen prior to the differentiation of indica and japonica subspecies in rice ancestor. CONCLUSION: These data suggested that OsP0A functions as the predominant P0 gene, playing an essential role in embryo development in rice. Our findings highlighted the importance of P0 genes in plant development.


Asunto(s)
Oryza , Proteínas Ribosómicas , Animales , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Oryza/genética , Oryza/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Desarrollo Embrionario
4.
Plant J ; 114(6): 1301-1318, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932862

RESUMEN

Cold stress is a major factor limiting the production and geographical distribution of rice (Oryza sativa) varieties. However, the molecular mechanisms underlying cold tolerance remain to be elucidated. Here, we report that ornithine δ-aminotransferase (OsOAT) contributes to cold tolerance during the vegetative and reproductive development of rice. osoat mutant was identified as a temperature-sensitive male sterile mutant with deformed floral organs and seedlings sensitive to cold stress. Comparative transcriptome analysis showed that OsOAT mutation and cold treatment of the wild-type plant led to similar changes in the global gene expression profiles in anthers. OsOAT genes in indica rice Huanghuazhan (HHZ) and japonica rice Wuyungeng (WYG) are different in gene structure and response to cold. OsOAT is cold-inducible in WYG but cold-irresponsive in HHZ. Further studies showed that indica varieties carry both WYG-type and HHZ-type OsOAT, whereas japonica varieties mostly carry WYG-type OsOAT. Cultivars carrying HHZ-type OsOAT are mainly distributed in low-latitude regions, whereas varieties carrying WYG-type OsOAT are distributed in both low- and high-latitude regions. Moreover, indica varieties carrying WYG-type OsOAT generally have higher seed-setting rates than those carrying HHZ-type OsOAT under cold stress at reproductive stage, highlighting the favorable selection for WYG-type OsOAT during domestication and breeding to cope with low temperatures.


Asunto(s)
Oryza , Oryza/metabolismo , Fitomejoramiento , Desarrollo de la Planta , Transaminasas/metabolismo , Fertilidad/genética , Ornitina/metabolismo , Frío
5.
Rice (N Y) ; 14(1): 66, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34255233

RESUMEN

BACKGROUND: The third-generation hybrid rice technology can be constructed by transforming a recessive nuclear male sterile (NMS) mutant with a transgenic cassette containing three functional modules: the wild type male fertility gene to restore the fertility of the mutant, the pollen killer gene that specifically kills the pollen grains carrying the transgene, and the red fluorescence protein (RFP) gene to mark the transgenic seed (maintainer). The transgenic plant produces 1:1 NMS seeds and maintainer seeds that can be distinguished by the RFP signal. However, the RFP signals in the partially filled or pathogen-infected maintainer seeds are often too weak to be detected by RFP-based seed sorting machine, resulting in intermingling of the maintainer seeds with NMS seeds. RESULTS: Here we constructed a weight-based seed sorting system for the third-generation hybrid rice technology by silencing the genes encoding ADP-glucose pyrophosphorylase (AGP) essential for endosperm starch biosynthesis via endosperm-specific expression of artificial microRNAs (amiRNAs). In this system, the NMS seeds have normal endosperm and are heavy, but the maintainer seeds have shrunken endosperms and are light-weighted. The maintainer seeds can be easily and accurately sorted out from the NMS seeds by weight-sorting machines, so pure and fully filled NMS seeds are available. CONCLUSIONS: The weight-based seed sorting system shows obvious advantages over the RFP-based seed sorting system in accuracy, efficiency, and cost for propagation of pure male sterile seeds. These characteristics will significantly increase the value and transgenic safety of the third-generation hybrid rice technology.

6.
Plant Cell Physiol ; 61(5): 988-1004, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32142141

RESUMEN

Pollen development is critical to the reproductive success of flowering plants, but how it is regulated is not well understood. Here, we isolated two allelic male-sterile mutants of OsMYB80 and investigated how OsMYB80 regulates male fertility in rice. OsMYB80 was barely expressed in tissues other than anthers, where it initiated the expression during meiosis, reached the peak at the tetrad-releasing stage and then quickly declined afterward. The osmyb80 mutants exhibited premature tapetum cell death, lack of Ubisch bodies, no exine and microspore degeneration. To understand how OsMYB80 regulates anther development, RNA-seq analysis was conducted to identify genes differentially regulated by OsMYB80 in rice anthers. In addition, DNA affinity purification sequencing (DAP-seq) analysis was performed to identify DNA fragments interacting with OsMYB80 in vitro. Overlap of the genes identified by RNA-seq and DAP-seq revealed 188 genes that were differentially regulated by OsMYB80 and also carried an OsMYB80-interacting DNA element in the promoter. Ten of these promoter elements were randomly selected for gel shift assay and yeast one-hybrid assay, and all showed OsMYB80 binding. The 10 promoters also showed OsMYB80-dependent induction when co-expressed in rice protoplast. Functional annotation of the 188 genes suggested that OsMYB80 regulates male fertility by directly targeting multiple biological processes. The identification of these genes significantly enriched the gene networks governing anther development and provided much new information for the understanding of pollen development and male fertility.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Polen/fisiología , Transducción de Señal , Sitios de Unión , Fertilidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Motivos de Nucleótidos/genética , Oryza/genética , Oryza/ultraestructura , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Polen/genética , Polen/ultraestructura , Regiones Promotoras Genéticas , Unión Proteica , Reproducibilidad de los Resultados
7.
J Integr Plant Biol ; 62(10): 1574-1593, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32068333

RESUMEN

Pollen exine contains complex biopolymers of aliphatic lipids and phenolics. Abnormal development of pollen exine often leads to plant sterility. Molecular mechanisms regulating exine formation have been studied extensively but remain ambiguous. Here we report the analyses of three GDSL esterase/lipase protein genes, OsGELP34, OsGELP110, and OsGELP115, for rice exine formation. OsGELP34 was identified by cloning of a male sterile mutant gene. OsGELP34 encodes an endoplasmic reticulum protein and was mainly expressed in anthers during pollen exine formation. osgelp34 mutant displayed abnormal exine and altered expression of a number of key genes required for pollen development. OsGELP110 was previously identified as a gene differentially expressed in meiotic anthers. OsGELP110 was most homologous to OsGELP115, and the two genes showed similar gene expression patterns. Both OsGELP110 and OsGELP115 proteins were localized in peroxisomes. Individual knockout of OsGELP110 and OsGELP115 did not affect the plant fertility, but double knockout of both genes altered the exine structure and rendered the plant male sterile. OsGELP34 is distant from OsGELP110 and OsGELP115 in sequence, and osgelp34 and osgelp110/osgelp115 mutants were different in anther morphology despite both were male sterile. These results suggested that OsGELP34 and OsGELP110/OsGELP115 catalyze different compounds for pollen exine development.


Asunto(s)
Esterasas/metabolismo , Oryza/enzimología , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Polen/enzimología , Polen/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Peroxisomas/metabolismo , Polen/metabolismo
8.
J Integr Plant Biol ; 62(8): 1246-1263, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31965735

RESUMEN

Large-scale production of male sterile seeds can be achieved by introducing a fertility-restoration gene linked with a pollen-killer gene into a recessive male sterile mutant. We attempted to construct this system in rice by using a late-stage pollen-specific (LSP) promoter driving the expression of maize α-amylase gene ZM-AA1. To obtain such promoters in rice, we conducted comparative RNA-seq analysis of mature pollen with meiosis anther, and compared this with the transcriptomic data of various tissues in the Rice Expression Database, resulting in 269 candidate LSP genes. Initial test of nine LSP genes showed that only the most active OsLSP3 promoter could drive ZM-AA1 to disrupt pollen. We then analyzed an additional 22 LSP genes and found 12 genes stronger than OsLSP3 in late-stage anthers. The promoters of OsLSP5 and OsLSP6 showing higher expression than OsLSP3 at stages 11 and 12 could drive ZM-AA1 to inactivate pollen, while the promoter of OsLSP4 showing higher expression at stage 12 only could not drive ZM-AA1 to disrupt pollen, suggesting that strong promoter activity at stage 11 was critical for pollen inactivation. The strong pollen-specific promoters identified in this study provided valuable tools for genetic engineering of rice male sterile system for hybrid rice production.


Asunto(s)
Oryza/genética , Polen/genética , Regiones Promotoras Genéticas , Fluorescencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Especificidad de Órganos/genética , Fenotipo , Plantas Modificadas Genéticamente , Reproducibilidad de los Resultados , Transcriptoma/genética
9.
J Exp Bot ; 71(1): 204-218, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31587067

RESUMEN

Meiotic recombination plays a central role in maintaining genome stability and increasing genetic diversity. Although meiotic progression and core components are widely conserved across kingdoms, significant differences remain among species. Here we identify a rice gene ABERRANT GAMETOGENESIS 1 (AGG1) that controls both male and female gametogenesis. Cytological and immunostaining analysis showed that in the osagg1 mutant the early recombination processes and synapsis occurred normally, but the chiasma number was dramatically reduced. Moreover, OsAGG1 was found to interact with ZMM proteins OsHEI10, OsZIP4, and OsMSH5. These results suggested that OsAGG1 plays an important role in crossover formation. Phylogenetic analysis showed that OsAGG1 is a plant-specific protein with a highly conserved N-terminal region. Further genetic and protein interaction analyses revealed that the conserved N-terminus was essential for the function of the OsAGG1 protein. Overall, our work demonstrates that OsAGG1 is a novel and critical component in rice meiotic crossover formation, expanding our understanding of meiotic progression. This study identified a plant-specific gene ABERRANT GAMETOGENESIS 1 that is required for meiotic crossover formation in rice. The conserved N-terminus of the AGG1 protein was found to be essential for its function.


Asunto(s)
Meiosis/genética , Oryza/fisiología , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Recombinación Genética , Alineación de Secuencia
10.
J Integr Plant Biol ; 62(8): 1227-1245, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31833176

RESUMEN

Pollen grains are covered by exine that protects the pollen from stress and facilitates pollination. Here we isolated a male sterile mutant s13283 in rice exhibiting aborted pollen with abnormal exine and defective aperture. The mutant gene encodes a novel plasma membrane-localized legume-lectin receptor kinase that we named OsLecRK-S.7. OsLecRK-S.7 was expressed at different levels in all tested tissues and throughout anther development. In vitro kinase assay showed OsLecRK-S.7 capable of autophosporylation. Mutation in s13283 (E560K) and mutation of the conserved ATP binding site (K418E) both knocked out the kinase activity. Mass spectrometry showed Thr376 , Ser378 , Thr386 , Thr403 , and Thr657 to be the autophosphorylation sites. Mutation of individual autophosphorylation site affected the in vitro kinase activity to different degrees, but did not abolish the gene function in fertility complementation. oslecrk-s.7 mutant plant overexpressing OsLecRK-S.7 recovered male fertility but showed severe growth retardation with reduced number of tillers, and these phenotypes were abolished by E560K or K418E mutation. The results indicated that OsLecRK-S.7 was a key regulator of pollen development.


Asunto(s)
Lectinas/metabolismo , Oryza/enzimología , Oryza/fisiología , Polen/enzimología , Polen/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Membrana Celular/enzimología , Fertilidad , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oryza/genética , Oryza/ultraestructura , Fenotipo , Filogenia , Polen/genética , Polen/ultraestructura , Proteínas Quinasas/genética
11.
J Integr Plant Biol ; 60(2): 173-188, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29193704

RESUMEN

Calcium-dependent protein kinases (CPKs) are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs and the molecular mechanisms underlying their activity remain largely unknown. Here, we characterized the function of OsCPK24, a cytosol-localized calcium-dependent protein kinase in rice. OsCPK24 was universally and highly expressed in rice plants and was induced by cold treatment. Whereas OsCPK24 knockdown plants exhibited increased sensitivity to cold compared to wild type (WT), OsCPK24-overexpressing plants exhibited increased cold tolerance. Plants overexpressing OsCPK24 exhibited increased accumulation of proline (an osmoprotectant) and glutathione (an antioxidant) and maintained a higher GSH/GSSG (reduced glutathione to oxidized glutathione) ratio during cold stress compared to WT. In addition to these effects in response to cold stress, we observed the kinase activity of OsCPK24 varied under different calcium concentrations. Further, OsCPK24 phosphorylated OsGrx10, a glutathione-dependent thioltransferase, at rates modulated by changes in calcium concentration. Together, our results support the hypothesis that OsCPK24 functions as a positive regulator of cold stress tolerance in rice, a process mediated by calcium signaling and involving phosphorylation and the inhibition of OsGrx10 to sustain higher glutathione levels.


Asunto(s)
Respuesta al Choque por Frío , Oryza/enzimología , Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Calcio/metabolismo , Calcio/farmacología , Frío , Respuesta al Choque por Frío/efectos de los fármacos , Respuesta al Choque por Frío/genética , Citosol/enzimología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Disulfuro de Glutatión/metabolismo , Oryza/efectos de los fármacos , Oryza/genética , Fosforilación/efectos de los fármacos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Prolina/metabolismo , Unión Proteica/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Nicotiana/genética
12.
Front Plant Sci ; 7: 2055, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144247

RESUMEN

Next-generation sequencing technologies (NGST) are being used to discover causal mutations in ethyl methanesulfonate (EMS)-mutagenized plant populations. However, the published protocols often deliver too many candidate sites and sometimes fail to find the mutant gene of interest. Accurate identification of the causal mutation from massive background polymorphisms and sequencing deficiencies remains challenging. Here we describe a NGST-based method, named SIMM, that can simultaneously identify the causal mutations in multiple independent mutants. Multiple rice mutants derived from the same parental line were back-crossed, and for each mutant, the derived F2 individuals of the recessive mutant phenotype were pooled and sequenced. The resulting sequences were aligned to the Nipponbare reference genome, and single nucleotide polymorphisms (SNPs) were subsequently compared among the mutants. Allele index (AI) and Euclidean distance (ED) were incorporated into the analysis to reduce noises caused by background polymorphisms and re-sequencing errors. Corrections of sequence bias against GC- and AT-rich sequences in the candidate region were conducted when necessary. Using this method, we successfully identified seven new mutant alleles from Huanghuazhan (HHZ), an elite indica rice cultivar in China. All mutant alleles were validated by phenotype association assay. A pipeline based on Perl scripts for SIMM is publicly available at https://sourceforge.net/projects/simm/.

13.
J Exp Bot ; 66(9): 2611-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25711711

RESUMEN

Grain weight is a major determinant of grain yield. GS5 is a positive regulator of grain size such that grain width, filling, and weight are correlated with its expression level. Previous work suggested that polymorphisms of GS5 in the promoter region might be responsible for the variation in grain size. In this study, two single nucleotide polymorphisms (SNPs) between the wide-grain allele GS5-1 and the narrow-grain allele GS5-2 in the upstream region of the gene that were responsible for the differential expression in developing young panicles were identified. These two polymorphs altered the responses of the GS5 alleles to abscisic acid (ABA) treatments, resulting in higher expression of GS5-1 than of GS5-2 in developing young panicles. It was also shown that SNPs in light-responsive elements of the promoter altered the response to light induction, leading to higher expression of GS5-2 than GS5-1 in leaves. Enhanced expression of GS5 competitively inhibits the interaction between OsBAK1-7 and OsMSBP1 by occupying the extracellular leucine-rich repeat (LRR) domain of OsBAK1-7, thus preventing OsBAK1-7 from endocytosis caused by interacting with OsMSBP1, providing an explanation for the positive association between grain size and GS5 expression. These results advanced our understanding of the molecular mechanism by which GS5 controls grain size.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Endocitosis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/análisis , Oryza/anatomía & histología , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/análisis , Proteínas de Plantas/fisiología , Polimorfismo de Nucleótido Simple/fisiología , Sitios de Carácter Cuantitativo , Nicotiana/genética
14.
Nat Genet ; 43(12): 1266-9, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22019783

RESUMEN

Increasing crop yield is one of the most important goals of plant science research. Grain size is a major determinant of grain yield in cereals and is a target trait for both domestication and artificial breeding(1). We showed that the quantitative trait locus (QTL) GS5 in rice controls grain size by regulating grain width, filling and weight. GS5 encodes a putative serine carboxypeptidase and functions as a positive regulator of grain size, such that higher expression of GS5 is correlated with larger grain size. Sequencing of the promoter region in 51 rice accessions from a wide geographic range identified three haplotypes that seem to be associated with grain width. The results suggest that natural variation in GS5 contributes to grain size diversity in rice and may be useful in improving yield in rice and, potentially, other crops(2).


Asunto(s)
Genes de Plantas , Variación Genética , Oryza/genética , Semillas/anatomía & histología , Recuento de Células , Proteínas de Ciclo Celular/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Haplotipos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Oryza/anatomía & histología , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...