Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biomed Pharmacother ; 175: 116740, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38749178

RESUMEN

Intestinal diseases often stem from a compromised intestinal barrier. This barrier relies on a functional epithelium and proper turnover of intestinal cells, supported by mitochondrial health. Mitochondria and lysosomes play key roles in cellular balance. Our previous researches indicate that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier damage by enhancing mitochondria-lysosome crosstalk, though the detailed mechanism is unclear. This study aimed to investigate the role of mitochondria-lysosome crosstalk in the protective effect of SeNPs on intestinal barrier function in mice exposed to lipopolysaccharide (LPS). The results showed that LPS exposure increased intestinal permeability in mice, leding to structural and functional damage to mitochondrial and lysosomal. Oral administration of SeNPs significantly upregulated the expression levels of TBC1D15 and Fis1, downregulated the expression levels of Rab7, Caspase-3, Cathepsin B, and MCOLN2, effectively alleviated LPS-induced mitochondrial and lysosomal dysfunction and maintained the intestinal barrier integrity in mice. Furthermore, SeNPs notably inhibited mitophagy caused by adenovirus-associated virus (AAV)-mediated RNA interference the expression of TBC1D15 in the intestine of mice, maintained mitochondrial and lysosomal homeostasis, and effectively alleviated intestinal barrier damage. These results suggested that SeNPs can regulate mitochondria-lysosome crosstalk and inhibit its damage by regulating the TBC1D15/Fis1/Rab7- signaling pathway. thereby alleviating intestinal barrier damage. It lays a theoretical foundation for elucidating the mechanism of mitochondria-lysosome crosstalk in regulating intestinal barrier damage and repair, and provides new ideas and new ways to establish safe and efficient nutritional regulation strategies to prevent and treat intestinal diseases caused by inflammation.

2.
J Colloid Interface Sci ; 661: 943-956, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330666

RESUMEN

The step-scheme (S-scheme) heterojunction has excellent redox capability, effectively degrading organic pollutants in wastewater. Combining S-scheme heterojunction with activated persulfate advanced oxidation process reasonably can further enhance the degradation of Emerging Contaminants. Herein, a novel zero-dimensional/one-dimensional (0D/1D) CoO-CuBi2O4 (CoO-CBO) photocatalyst with S-scheme heterojunction was designed by hydrothermal and solvothermal methods. The band structure and electron and hole transfer pathway of CoO-CBO were analyzed using the ex-situ and in-situ X-ray photoelectron spectroscopy (XPS), Ultraviolet and Visible Spectrophotometer (UV-Vis) and optical radiation Kelvin probe force microscope (KPFM), and the formation of S-scheme heterojunction was demonstrated. The photocatalytic activity of ·S-scheme CoO-CBO heterojunction was carried out by degrading tetracycline (TC) with activating potassium monopersulfate triple salt under visible light. Compared with pure CuBi2O4 and pure CoO, 30%CoO/CuBi2O4 catalyst exhibited the highest TC degradation performance after activating persulfate, degrading 89.5% of TC within 90 min. On the one hand, the S-scheme heterojunction formed between CoO and CBO had a high redox potential. On the other hand, the activation of persulfate by Co and Cu could accelerate redox cycles and facilitate the generation of active radicals such as SO4-, O2- and OH, promoting the separation of the photogenerated e- and h+ in the composite, enhancing the peroxydisulfate (PDS) activation performance and improving the degradation effect of TC. Then, a gradual decrease in the toxicity of the intermediates in the TC degradation process was detected by ECOCER. In all, this study provided an S-scheme CoO/CuBi2O4 heterojunction that can activate PDS to degrade TC efficiently, which provided a new idea for the study of novel pollutant degradation and environmental toxicology.

3.
Front Pharmacol ; 15: 1367358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410130

RESUMEN

Prostatic cancer (PCa) is a common malignant neoplasm in men worldwide. Most patients develop castration-resistant prostate cancer (CRPC) after treatment with androgen deprivation therapy (ADT), usually resulting in death. Therefore, investigating new therapeutic targets and drugs for PCa patients is urgently needed. Nuclear Dbf2-related kinase 1 (NDR1), also known as STK38, is a serine/threonine kinase in the NDR/LATS kinase family that plays a critical role in cellular processes, including immunity, inflammation, metastasis, and tumorigenesis. It was reported that NDR1 inhibited the metastasis of prostate cancer cells by suppressing epithelial-mesenchymal transition (EMT), and decreased NDR1 expression might lead to a poorer prognosis, suggesting the enormous potential of NDR1 in antitumorigenesis. In this study, we characterized a small-molecule agonist named aNDR1, which specifically bound to NDR1 and potently promoted NDR1 expression, enzymatic activity and phosphorylation. aNDR1 exhibited drug-like properties, such as favorable stability, plasma protein binding capacity, cell membrane permeability, and PCa cell-specific inhibition, while having no obvious effect on normal prostate cells. Meanwhile, aNDR1 exhibited good antitumor activity both in vitro and in vivo. aNDR1 inhibited proliferation and migration of PCa cells and promoted apoptosis of PCa cells in vitro. We further found that aNDR1 inhibited subcutaneous tumors and lung metastatic nodules in vivo, with no obvious toxicity to the body. In summary, our study presents a potential small-molecule lead compound that targets NDR1 for clinical therapy of PCa patients.

4.
Anim Nutr ; 15: 99-113, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023380

RESUMEN

Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na2SeO3). Here, we investigated the effects of replacing dietary Na2SeO3 with SeNPs synthesized by Lactobacillus casei ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (Duroc × Landrace × Large Yorkshire) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na2SeO3) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (P = 0.022) and average daily feed intake (P = 0.033), reduced (P = 0.056) the diarrhea incidence, and improved (P = 0.013) the feed conversion ratio compared with Na2SeO3. Additionally, SeNPs increased jejunal microvilli height (P = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (P < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (P < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (P < 0.05) the abundance of Holdemanella and the levels of acetate and propionate. Correlation analysis suggested that Holdemanella was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na2SeO3 with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.

5.
Anim Nutr ; 15: 275-287, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38033610

RESUMEN

Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.

6.
Cancer Sci ; 114(11): 4270-4285, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37715534

RESUMEN

Branched-chain keto-acid dehydrogenase kinase (BCKDK) is the rate-limiting enzyme of branched-chain amino acid (BCAA) metabolism. In the last six years, BCKDK has been used as a kinase to promote tumor proliferation and metastasis. Renal cell carcinoma (RCC) is a highly vascularized tumor. A high degree of vascularization promotes tumor metastasis. Our objective is to explore the relationship between BCKDK and RCC metastasis and its specific mechanism. In our study, BCKDK is highly expressed in renal clear cell carcinoma and promotes the migration of clear cell renal cell carcinoma (ccRCC). Exosomes from ccRCC cells can promote vascular permeability and angiogenesis, especially when BCKDK is overexpressed in ccRCC cells. BCKDK can also augment the miR-125a-5p expression in ccRCC cells and derived exosomes, thereby decreasing the downstream target protein VE-cadherin level, weakening adhesion junction expression, increasing vascular permeability, and promoting angiogenesis in HUVECs. The novel BCKDK/Exosome-miR-125a-5p/VE-cadherin axis regulates intercellular communication between ccRCC cells and HUVECs. BCKDK plays a critical role in renal cancer metastasis, may be used as a molecular marker of metastatic ccRCC, and even may become a potential target of clinical anti-vascular therapy for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/patología , Permeabilidad Capilar , Línea Celular Tumoral , Neoplasias Renales/patología , MicroARNs/genética , MicroARNs/metabolismo , Oxidorreductasas
7.
J Biophotonics ; 16(12): e202300160, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37643988

RESUMEN

OBJECTIVE: This study aimed to observe the fluorescence characteristics of acne inflammatory skin lesions in 5-aminolevulinic acid-based photodynamic diagnosis (ALA-PDD), and discuss the viability of using ALA-PDD to evaluate acne inflammatory skin lesions and explore the advantages of predicting subclinical skin lesions. METHODS: The OBSERV facial skin detector collected photographs of 20 patients before and after optical intra-tissue fiber irradiation photodynamic therapy (OFI-ALA-PDT) in both ALA-PDD and white light patterns. The patients were treated once a week for four consecutive weeks in order to analyze the correlation between the two patterns in recognizing inflammatory skin lesions. RESULTS: Before and after treatment, there was no significant difference between the two patterns for recognizing acne inflammatory skin lesions (p > 0.05). Both patterns demonstrated a strong correlation (r > 0.90) for the recognition of various types of inflammatory skin lesions at different treatment stages. CONCLUSION: ALA-PDD is a feasible method for evaluating acne inflammatory lesions, guiding treatment and judging efficacy. It has advantages in predicting subclinical skin lesions and deserves further study.


Asunto(s)
Acné Vulgar , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Ácido Aminolevulínico , Acné Vulgar/diagnóstico , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/patología , Luz , Resultado del Tratamiento
8.
iScience ; 26(7): 107185, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37404377

RESUMEN

Although anti-PD-L1 therapy has been used in the clinical treatment of renal cell carcinoma (RCC), a proportion of patients are not sensitive to it, which may be attributed to the heterogeneity of PD-L1 expression. Here, we demonstrated that high TOPK (T-LAK cell-originated Protein Kinase) expression in RCC promoted PD-L1 expression by activating ERK2 and TGF-ß/Smad pathways. TOPK was positively correlated with PD-L1 expression levels in RCC. Meanwhile, TOPK significantly inhibited the infiltration and function of CD8+ T cells and promoted the immune escape of RCC. Moreover, inhibition of TOPK significantly enhanced CD8+ T cell infiltration, promoted CD8+ T cell activation, enhanced anti-PD-L1 therapeutic efficacy, and synergistically enhanced anti-RCC immune response. In conclusion, this study proposes a new PD-L1 regulatory mechanism that is expected to improve the effectiveness of immunotherapy for RCC.

9.
Toxicology ; 494: 153593, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442268

RESUMEN

The intestinal epithelial barrier plays a crucial role in maintaining human and animal health. Deoxynivalenol (DON) is a mycotoxin that contaminates cereal-based foods worldwide, which is a serious threat to human and animal health. This study was aimed to investigate the protective effect of selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 against DON-induced intestinal epithelial barrier dysfunction and its relationship with PERK-mediated signaling pathway. IPEC-J2 cells were randomly assigned to four groups: Con (vehicle), DON (0.6 µg DON/mL, 48 h), SeNPs+DON (8 µg Se/mL, 24 h; 0.6 µg DON/mL, 48 h) and SeNPs (8 µg Se/mL, 24 h). Compared with Con group, the transepithelial electrical resistance (TEER) and the tight junction proteins expression of IPEC-J2 cells exposed to DON was increased and decreased, respectively. In addition, DON exposure led to increased ROS content, decreased antioxidant capacity, structural damage of endoplasmic reticulum (ER), and activation of endoplasmic reticulum stress (ERS)-related protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in IPEC-J2. Compared with SeNPs+DON group, SeNPs alleviated oxidative stress, ER structure damage and PERK pathway activation and the increase of intestinal epithelial permeability of IPEC-J2 cells exposed to DON. PERK agonist (CCT020312) and inhibitor (GSK2656157) treatments were performed to identify the role of PERK signaling pathway in the regulatory effects of SeNPs on DON-induced intestinal epithelial barrier dysfunction. Compared with SeNPs+DON group, PERK agonist increased the expression levels of p-PERK. PERK inhibitor exerted a similar inhibitory effect to SeNPs on the p-PERK expression. In conclusion, SeNPs effectively alleviate DON-induced intestinal epithelial barrier dysfunction in IPEC-J2 cells, which are closely associated with ERS-related PERK signaling pathway. This will provide a potential solution for prevention and control of DON in the aquaculture industry.


Asunto(s)
Enfermedades Intestinales , Nanopartículas , Selenio , Animales , Línea Celular , Células Epiteliales , Mucosa Intestinal/metabolismo , Nanopartículas/toxicidad , Selenio/farmacología
10.
Cell Death Dis ; 14(7): 445, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460470

RESUMEN

Breast cancer is the most common malignant cancer in women worldwide. Cancer metastasis is the major cause of cancer-related deaths. BCKDK is associated with various diseases, including proliferation, migration, and invasion in multiple types of human cancers. However, the relevance of BCKDK to the development and progression of breast cancers and its function is unclear. This study found that BCKDK was overexpressed in breast cancer, associated with poor prognosis, and implicated in tumor metastasis. The downregulation of BCKDK expression inhibited the migration of human breast cancer cells in vitro and diminished lung metastasis in vivo. BCKDK perturbed the cadherin-catenin complex at the adherens junctions (AJs) and assembled focal adhesions (FAs) onto the extracellular matrix, thereby promoting the directed migration of breast cancer cells. We observed that BCKDK acted as a conserved regulator of the ubiquitination of cytoskeletal protein talin1 and the activation of the FAK/MAPK pathway. Further studies revealed that BCKDK inhibited the binding of talin1 to E3 ubiquitin ligase-TRIM21, leading to the decreased ubiquitination/degradation of talin1. In conclusion, identifying BCKDK as a biomarker for breast cancer metastasis facilitated further research on diagnostic biomarkers. Elucidating the mechanism by which BCKDK exerted its biological effect could provide a new theoretical basis for developing new markers for breast cancer metastasis and contribute to developing new therapies for the clinical treatment of breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Femenino , Humanos , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Adhesiones Focales/metabolismo , Neoplasias Pulmonares/secundario , Metástasis de la Neoplasia/patología , Talina
11.
Biomed Pharmacother ; 165: 115033, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37379640

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) which is related to an immunological imbalance of the intestinal mucosa. Many clinical evidences indicate probiotics supplementation appears to be effective and safe in patients with UC. Vasoactive intestinal peptide (VIP) is an endogenous neuropeptide with multiple physiological and pathological effects. In this study, we investigated the protective effect of the combination of Lactobacillus casei ATCC 393 (L. casei ATCC 393) with VIP on dextran sodium sulfate (DSS)-induced UC in mice and the potential mechanism. The results showed that, compared with the control group, DSS treatment significantly shortened the colon length, caused inflammation and oxidative stress, and further resulted in the intestinal barrier dysfunction and gut microbiota dysbiosis. In addition, intervention with L. casei ATCC 393, VIP or L. casei ATCC 393 combined with VIP significantly reduced UC disease activity index. However, compared with L. casei ATCC 393 or VIP, L. casei ATCC 393 combined with VIP effectively relieved symptoms of UC by regulating immune response, enhancing antioxidant capacity, and regulating nuclear factor kappa-B (NF-κB) and nuclear factor erythroid-derived-2-like 2 (Nrf2) signaling pathways. In conclusion, this study suggests that L. casei ATCC 393 combined with VIP can effectively relieve DSS-induced UC, which is a promising treatment strategy for UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Gastrointestinales , Lacticaseibacillus casei , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , FN-kappa B/metabolismo , Péptido Intestinal Vasoactivo , Factor 2 Relacionado con NF-E2/metabolismo , Dextranos/farmacología , Ratones Endogámicos C57BL , Transducción de Señal , Colon , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Colitis/tratamiento farmacológico
12.
Food Funct ; 14(10): 4891-4904, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37144827

RESUMEN

The intestinal epithelial barrier plays a fundamental role in human and animal health. Mitochondrial dysfunction can lead to intestinal epithelial barrier damage. The interaction between mitochondria and lysosomes has been proved to regulate each other's dynamics. Our previous studies have demonstrated that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier injury through regulating mitochondrial autophagy. In this study, we hypothesize that the protective effects of SeNPs against intestinal epithelial barrier dysfunction are associated with mitochondrial-lysosomal crosstalk. The results showed that lipopolysaccharide (LPS) and TBC1D15 siRNA transfection both caused the increase of intestinal epithelial permeability, activation of mitophagy, and mitochondrial and lysosomal dysfunction in porcine jejunal epithelial cells (IPEC-J2). SeNP pretreatment significantly up-regulated the expression levels of TBC1D15 and Fis1, down-regulated Rab7, caspase-3, MCOLN2 and cathepsin B expression levels, reduced cytoplasmic Ca2+ concentration, effectively alleviated mitochondrial and lysosomal dysfunction, and maintained the integrity of the intestinal epithelial barrier in IPEC-J2 cells exposed to LPS. Furthermore, SeNPs obviously reduced cytoplasmic Ca2+ concentration and activated the TBC1D15/Fis/Rab7-mediated signaling pathway, shortened the contact time between mitochondria and lysosomes, inhibited mitophagy, maintained mitochondrial and lysosomal homeostasis, and effectively attenuated intestinal epithelial barrier injury in IPEC-J2 cells transfected with TBC1D15 siRNA. These results indicated that the protective effect of SeNPs on intestinal epithelial barrier injury is closely associated with the TBC1D15/Rab7-mediated mitochondria-lysosome crosstalk signaling pathway.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedades Intestinales , Nanopartículas , Selenio , Humanos , Animales , Porcinos , Selenio/farmacología , Selenio/metabolismo , Mucosa Intestinal/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Intestinales/metabolismo , Mitocondrias , Células Epiteliales/metabolismo , Lisosomas/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Activadoras de GTPasa/metabolismo
13.
Microbiol Spectr ; 11(3): e0065923, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219421

RESUMEN

Microorganisms capable of converting toxic selenite into elemental selenium (Se0) are considered an important and effective approach for bioremediation of Se contamination. In this study, we investigated the mechanism of reducing selenite to Se0 and forming Se nanoparticles (SeNPs) by food-grade probiotic Lactobacillus casei ATCC 393 (L. casei ATCC 393) through proteomics analysis. The results showed that selenite added during the exponential growth period of bacteria has the highest reduction efficiency, and 4.0 mM selenite decreased by nearly 95% within 72 h and formed protein-capped-SeNPs. Proteomics analysis revealed that selenite induced a significant increase in the expression of glutaredoxin, oxidoreductase, and ATP binding cassette (ABC) transporter, which can transport glutathione (GSH) and selenite. Selenite treatment significantly increased the CydC and CydD (putative cysteine and glutathione importer, ABC transporter) mRNA expression level, GSH content, and GSH reductase activity. Furthermore, supplementation with an additional GSH significantly increased the reduction rate of selenite, while GSH depletion significantly inhibited the reduction of selenite, indicating that GSH-mediated Painter-type reaction may be the main pathway of selenite reduction in L. casei ATCC 393. Moreover, nitrate reductase also participates in the reduction process of selenite, but it is not the primary factor. Overall, L. casei ATCC 393 effectively reduced selenite to SeNPs by GSH and nitrate reductase-mediated reduction pathway, and the GSH pathway played the decisive role, which provides an environmentally friendly biocatalyst for the bioremediation of Se contamination. IMPORTANCE Due to the high solubility and bioavailability of selenite, and its widespread use in industrial and agricultural production, it is easy to cause selenite to accumulate in the environment and reach toxic levels. Although the bacteria screened from special environments have high selenite tolerance, their safety has not been fully verified. It is necessary to screen out strains with selenite-reducing ability from nonpathogenic, functionally known, and widely used strains. Herein, we found food-grade probiotic L. casei ATCC 393 effectively reduced selenite to SeNPs by GSH and nitrate reductase-mediated reduction pathway, which provides an environmentally friendly biocatalyst for the bioremediation of Se contamination.


Asunto(s)
Lacticaseibacillus casei , Probióticos , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lacticaseibacillus casei/genética , Biodegradación Ambiental , Oxidación-Reducción , Proteómica , Bacterias/metabolismo , Glutatión/metabolismo
14.
Biol Trace Elem Res ; 201(9): 4484-4496, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36469280

RESUMEN

Exposure to hypobaric hypoxia at high altitude will cause different tissue and organ damage over a long period of time. Studies have shown that hypobaric hypoxia can cause severe primary intestinal barrier dysfunction, and then cause multiple organ dysfunction. Our previous research showed that selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 (L. casei ATCC 393) can effectively alleviate intestinal barrier dysfunction caused by oxidative stress and inflammation in mice. This study was conducted to investigate the protective effect of biological SeNPs synthesized by L. casei ATCC 393 on intestinal barrier function in acute hypobaric hypoxic stress mice. The results showed that compared with the hypobaric hypoxic, the SeNPs synthesized by L. casei ATCC 393 by oral administration could effectively alleviate the shortening of intestinal villi, which decreased the level of diamine oxidase (DAO) and myeloperoxidase (MPO), and the expression level of tight junction protein in ileum was increased. In addition, SeNPs significantly increased the activities of superoxide dismutase (SOD), cyclooxygenase (COX-1) and glutathione peroxidase (GPx), and decreased the level of malondialdehyde (MDA), and inhibit the increase of hypoxia related factor. SeNPs effectively regulate the intestinal microecology disorder caused by hypobaric hypoxia stress, and maintain the intestinal microecology balance. In addition, oral administration of SeNPs had better protective effect on intestinal barrier function of mice under hypobaric hypoxia stress. These results suggested that SeNPs synthesized by L. casei ATCC 393 can effectively alleviate the damage of intestinal barrier function under acute hypobaric hypoxic stress, which may be closely related to the antioxidant activity of SeNPs.


Asunto(s)
Enfermedades Gastrointestinales , Lacticaseibacillus casei , Nanopartículas , Selenio , Ratones , Animales , Selenio/farmacología , Ratones Endogámicos C57BL , Estrés Oxidativo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo
15.
Neurotox Res ; 40(6): 1869-1881, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36435923

RESUMEN

Deposition of aggregated amyloid beta (Aß) protein is considered to be a major causative factor that is associated with the development of oxidative stress and neuroinflammation in the pathogenesis of Alzheimer's disease (AD). Selenium nanoparticles (SeNPs) have been experimentally using for treatment of neurological disease due to their low toxicity, high bioavailability, and multiple bioactivities. This study was conducted to investigate the protective effects of biogenic SeNPs by Lactobacillus casei ATCC 393 against Aß25-35-induced toxicity in PC12 cells and its association with oxidative stress and inflammation. The results showed that SeNPs had no cytotoxicity on PC12 cells. Moreover, SeNPs entered cells through cellular endocytosis, which effectively attenuated Aß25-35-induced toxicity in PC12 cells. In addition, compared with Aß25-35 model group, SeNP pretreatment significantly enhanced the antioxidant capacity, inhibited the overproduction of reactive oxygen species (ROS), effectively regulated the inflammatory response, decreased the activity of acetylcholinesterase, significantly reduced the expression level of caspase-1 and the ratio of Bcl-2/Bax, and upregulated the expression level of p53. Furthermore, compared with Aß25-35 model group, SeNPs effectively promoted the phosphorylation of Akt and cAMP-response element-binding protein (CREB), and upregulated the expression level of brain-derived neurotrophic factor (BDNF). In addition, the Akt inhibitor (AKT inhibitor VIII, AKTi-1/2) could reverse the protective effects of SeNPs on PC12 cells. The Akt agonist (SC79) had a similar effect on PC12 cells as that of SeNPs. Overall, this study demonstrated that biogenic SeNPs can effectively alleviate the Aß25-35-induced toxicity in PC12 cells via Akt/CREB/BDNF signaling pathway.


Asunto(s)
Nanopartículas , Selenio , Ratas , Animales , Péptidos beta-Amiloides/toxicidad , Células PC12 , Selenio/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Acetilcolinesterasa/metabolismo , Transducción de Señal , Fragmentos de Péptidos/toxicidad , Apoptosis
16.
Ecotoxicol Environ Saf ; 248: 114276, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36371888

RESUMEN

Deoxynivalenol (DON), a secondary product of Fusarium metabolism, is common in wheat, corn, barley and other grain crops, posing a variety of adverse effects to environment, food safety, human and animal health. The absorption of DON mainly occurs in the proximal part of the small intestine, which can induce intestinal mucosal epithelial injury, and ultimately affect the growth performance and production performance of animals. This study was conducted to investigate the protective effects of selenium nanoparticles (SeNPs)-enriched Lactobacillus casei ATCC 393 (L. casei ATCC 393) on intestinal barrier function of C57BL/6 mice exposed to DON and its association with endoplasmic reticulum stress (ERS) and gut microbiota. The results showed that DON exposure increased the levels of interleukin-6 (IL-6) and interleukin-8 (IL-8), decreased the levels of interleukin-10 (IL-10) and transforming growth factor beta (TGF-ß), caused a redox imbalance and intestinal barrier dysfunction, decreased the mRNA levels of endoplasmic reticulum- resident selenoproteins, activated ERS-protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway, altered the composition of the gut microbiota and decreased short-chain fatty acids (SCFAs) content. Dietary supplementation with SeNPs-enriched L. casei ATCC 393 can effectively protect the integrity of intestinal barrier function by reducing inflammatory response, enhancing the antioxidant capacity, up-regulating the mRNA levels of endoplasmic reticulum-resident selenoproteins, inhibiting the activation of PERK signaling pathway, reversing gut microbiota dysbiosis and increasing the content of SCFAs in mice exposed to DON. In conclusion, dietary supplementation with SeNPs-enriched L. casei ATCC 393 effectively alleviated intestinal barrier dysfunction induced by DON in C57BL/6 mice, which may be closely associated with the regulation of ERS and gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus casei , Nanopartículas , Selenio , Humanos , Ratones , Animales , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Selenio/farmacología , Selenio/metabolismo , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Ácidos Grasos Volátiles/metabolismo , ARN Mensajero/metabolismo , Suplementos Dietéticos
17.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232893

RESUMEN

Although STK38 (serine-threonine kinase 38) has been proven to play an important role in cancer initiation and progression based on a series of cell and animal experiments, no systemic assessment of STK38 across human cancers is available. We firstly performed a pan-cancer analysis of STK38 in this study. The expression level of STK38 was significantly different between tumor and normal tissues in 15 types of cancers. Meanwhile, a prognosis analysis showed that a distinct relationship existed between STK38 expression and the clinical prognosis of cancer patients. Furthermore, the expression of STK38 was related to the infiltration of immune cells, such as NK cells, memory CD4+ T cells, mast cells and cancer-associated fibroblasts in a few cancers. There were three immune-associated signaling pathways involved in KEGG analysis of STK38. In general, STK38 shows a significant prognostic value in different cancers and is closely associated with cancer immunity.


Asunto(s)
Neoplasias , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Neoplasias/genética , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
18.
Food Chem Toxicol ; 170: 113480, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257488

RESUMEN

Selenium nanoparticles (SeNPs) with unique biological properties have been suggested as a safer and more effective platform for delivering of Selenium for biological needs. In this study, we investigated the association between gut microbiota altered by SeNPs supplementation and its metabolites under oxidative stress conditions through 16S rDNA gene sequencing analysis and untargeted metabolomics. The results showed that dietary supplementation with SeNPs attenuated diquat-induced acute toxicity in mice, as demonstrated by lower levels of inflammatory effector cells, and biochemical markers in serum such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH). SeNPs also reversed the perturbed gut microbiota composition induced by diquat, decreased the Firmicutes/Bacteroidetes ratio, and increased the abundance of beneficial bacteria such as Akkermansia, Muribaculaceae, Bacteroides and Parabacteroides. Untargeted fecal metabolomics showed that SeNPs can regulate the production of steroids and steroid derivatives, organonitrogen compounds, pyridines and derivatives and other metabolites. Microbiome-metabolome correlation analysis suggested that Parabacteroides was the key bacteria for the SeNPs intervention, which might upregulate the levels of metabolites such as trimethaphan, emedastine, berberine, desoxycortone, tetrahydrocortisone. This study demonstrated that dietary SeNPs supplementation can extensively modulate the gut microbiota and its metabolism, thereby alleviating diquat-induced acute toxicity.


Asunto(s)
Microbioma Gastrointestinal , Nanopartículas , Selenio , Ratones , Animales , Selenio/farmacología , Selenio/química , Diquat/toxicidad , Metaboloma , Nanopartículas/toxicidad , Nanopartículas/química , Bacterias
19.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36230800

RESUMEN

Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless, most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT. As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance (ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers to a ligand-independent and constitutively active variant of the AR and is considered a key driver of ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7 in ENZR of CRPC to contribute novel insights for CRPC therapy.

20.
Int J Nanomedicine ; 17: 4807-4827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246933

RESUMEN

Purpose: The bidirectional communication between the gut and the central nervous system mediated by gut microbiota is closely related to the occurrence and development of neurodegenerative diseases, including Alzheimer's disease (AD). Selenium (Se) has been identified as playing a role against AD. Probiotics have beneficial effects on host brain function and behavior by modulating the microbiota-gut-brain axis. Herein, we evaluated the protective effects of Lactobacillus casei ATCC 393 (L. casei ATCC 393) and selenium nanoparticles-enriched L. casei ATCC 393 (L. casei ATCC 393-SeNPs) against D-galactose/aluminum chloride-induced AD model mice. Methods: The Morris Water Maze (MWM) test was used to assess cognitive function of mice. The morphology and histopathological changes, antioxidant capacity and immune responses in the brain and ileum were evaluated. The alterations in intestinal permeability of the mice were determined using FITC-dextran. Gut microbiota composition was assessed using 16s rRNA sequencing. Results: Thirteen weeks intervention with L. casei ATCC 393 or L. casei ATCC 393-SeNPs significantly improved cognitive dysfunction, and minimized amyloid beta (Aß) aggregation, hyperphosphorylation of TAU protein, and prevented neuronal death by modulating Akt/cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway. Moreover, compared with L. casei ATCC 393, L. casei ATCC 393-SeNPs further effectively mitigated intestinal barrier dysfunction by improving antioxidant capacity, regulating immune response, restoring gut microbiota balance, and increasing the level of short-chain fatty acids and neurotransmitters, thereby inhibiting the activation of microglia and protecting brain neurons from neurotoxicity such as oxidative stress and neuroinflammation. Conclusion: These findings indicated that targeting the microbiota-gut-brain axis with L. casei ATCC 393-SeNPs may have therapeutic potential for the deficits of cognitive function in the AD model mice. Thus, we anticipate that L. casei ATCC 393-SeNPs may be a promising and safe Se nutritional supplement for use as a food additive to prevent the neurodegenerative disease.


Asunto(s)
Disfunción Cognitiva , Microbioma Gastrointestinal , Lacticaseibacillus casei , Nanopartículas , Enfermedades Neurodegenerativas , Selenio , Cloruro de Aluminio/farmacología , Péptidos beta-Amiloides/metabolismo , Animales , Antioxidantes/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Eje Cerebro-Intestino , Disfunción Cognitiva/prevención & control , Aditivos Alimentarios , Galactosa , Lacticaseibacillus casei/metabolismo , Ratones , Nanopartículas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Ribosómico 16S , Selenio/metabolismo , Selenio/farmacología , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...