Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 69(3): 354-366, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38072706

RESUMEN

Engineered T cells expressing chimeric antigen receptor (CAR) exhibit high response rates in B-cell malignancy treatments and possess therapeutic potentials against various diseases. However, the complicated ex vivo production process of CAR-T cells limits their application. Herein, we use virus-mimetic fusogenic nanovesicles (FuNVs) to produce CAR-T cells in vivo via membrane fusion-mediated CAR protein delivery. Briefly, the FuNVs are modified using T-cell fusogen, adapted from measles virus or reovirus fusogens via displaying anti-CD3 single-chain variable fragment. The FuNVs can efficiently fuse with the T-cell membrane in vivo, thereby delivering the loaded anti-CD19 (αCD19) CAR protein onto T-cells to produce αCD19 CAR-T cells. These αCD19 CAR-T cells alone or in combination with anti-OX40 antibodies can treat B-cell lymphoma without inducing cytokine release syndrome. Thus, our strategy provides a novel method for engineering T cells into CAR-T cells in vivo and can further be employed to deliver other therapeutic membrane proteins.


Asunto(s)
Linfoma de Células B , Receptores Quiméricos de Antígenos , Humanos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Receptores Quiméricos de Antígenos/genética , Antígenos CD19
2.
Biomater Sci ; 11(22): 7445-7457, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37819252

RESUMEN

The topoisomerase I inhibitor, 7-ethyl-10-hydroxycamptothecin (SN38), has demonstrated potent anticancer activity. However, its clinical application is hindered by its low solubility and high crystallization propensity, which further complicates its encapsulation into nanoparticles for systemic delivery. Herein, we explore the utilization of lipid-assisted poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PLA) nanoparticles to achieve ultrahigh loading capability for SN38. Through the introduction of cationic, anionic, or neutral lipids, the SN38 loading efficiency and loading capacity is elevated to >90% and >10% respectively. These lipids efficiently attenuate the intermolecular π-π stacking of SN38, thereby disrupting its crystalline structure. Moreover, we assess the therapeutic activity of SN38-loaded formulations in various tumor models and identify an anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG)-assisted formulation that exhibits the highest anticancer activity and has favorable biosafety. Overall, our findings present a simple and robust strategy to achieve ultrahigh loading efficiency of SN38 using commonly employed PEG-b-PLA nanoparticles, opening up a new avenue for the systemic delivery of SN38.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Polietilenglicoles/química , Nanopartículas/química , Alcoholes Grasos , Poliésteres , Línea Celular Tumoral
3.
Med Rev (2021) ; 3(2): 152-179, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37724086

RESUMEN

Immune cells are indispensable defenders of the human body, clearing exogenous pathogens and toxicities or endogenous malignant and aging cells. Immune cell dysfunction can cause an inability to recognize, react, and remove these hazards, resulting in cancers, inflammatory diseases, autoimmune diseases, and infections. Immune cells regulation has shown great promise in treating disease, and immune agonists are usually used to treat cancers and infections caused by immune suppression. In contrast, immunosuppressants are used to treat inflammatory and autoimmune diseases. However, the key to maintaining health is to restore balance to the immune system, as excessive activation or inhibition of immune cells is a common complication of immunotherapy. Nanoparticles are efficient drug delivery systems widely used to deliver small molecule inhibitors, nucleic acid, and proteins. Using nanoparticles for the targeted delivery of drugs to immune cells provides opportunities to regulate immune cell function. In this review, we summarize the current progress of nanoparticle-based strategies for regulating immune function and discuss the prospects of future nanoparticle design to improve immunotherapy.

4.
Nat Commun ; 14(1): 1993, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031188

RESUMEN

PD-1/PD-L1 blockade therapy that eliminates T-cell inhibition signals is successful, but poor benefits are often observed. Increasing T-cell infiltration and quantity of PD-1/PD-L1 inhibitors in tumor can improve efficacy but remains challenging. Here, we devise tumor-specific gene nanomedicines to mobilize tumor cells to secrete CXCL9 (T-cell chemokine) and anti-PD-L1 scFv (αPD-L1, PD-L1 blocking agent) for enhanced immunotherapy. The tyrosinase promoter-driven NPTyr-C9AP can specifically co-express CXCL9 and αPD-L1 in melanoma cells, thereby forming a CXCL9 gradient for T-cell recruitment and high intratumoral αPD-L1 concentration for enhancing T-cell activation. As a result, NPTyr-C9AP shows strong antimelanoma effects. Moreover, specific co-expression of CXCL9 and αPD-L1 in various tumor cells is achieved by replacing the tyrosinase promoter of NPTyr-C9AP with a survivin promoter, which increases T-cell infiltration and activation and therapeutic efficacy in multiple tumors in female mice. This study provides a strategy to maximize the immunotherapeutic outcome regardless of the heterogeneous tumor microenvironment.


Asunto(s)
Neoplasias , Linfocitos T , Femenino , Ratones , Animales , Receptor de Muerte Celular Programada 1 , Monofenol Monooxigenasa , Nanomedicina , Inmunoterapia , Antígeno B7-H1/genética , Microambiente Tumoral , Línea Celular Tumoral
5.
Pharm Res ; 40(1): 145-156, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36002611

RESUMEN

PURPOSE: Hepatitis B virus (HBV) infection is such a global health problem that hundreds of millions of people are HBV carriers. Current anti-viral agents can inhibit HBV replication, but can hardly eradicate HBV. Cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) are an adjuvant that can activate plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs) to induce therapeutic immunity for HBV eradication. However, efficient delivery of CpG ODNs into pDCs and cDCs remains a challenge. In this study, we constructed a series of cationic lipid-assisted nanoparticles (CLANs) using different cationic lipids to screen an optimal nanoparticle for delivering CpG ODNs into pDCs and cDCs. METHODS: We constructed different CLANCpG using six cationic lipids and analyzed the cellular uptake of different CLANCpG by pDCs and cDCs in vitro and in vivo, and further analyzed the efficiency of different CLANCpG for activating pDCs and cDCs in both wild type mice and HBV-carrier mice. RESULTS: We found that CLAN fabricated with 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP) showed the highest efficiency for delivering CpG ODNs into pDCs and cDCs, resulting in strong therapeutic immunity in HBV-carrier mice. By using CLANCpG as an immune adjuvant in combination with the injection of recombinant hepatitis B surface antigen (rHBsAg), HBV was successfully eradicated and the chronic liver inflammation in HBV-carrier mice was reduced. CONCLUSION: We screened an optimized CLAN fabricated with DOTAP for efficient delivery of CpG ODNs to pDCs and cDCs, which can act as a therapeutic vaccine adjuvant for treating HBV infection.


Asunto(s)
Hepatitis B , Nanopartículas , Ratones , Animales , Virus de la Hepatitis B , Oligodesoxirribonucleótidos/farmacología , Fosfatos , Citosina , Guanosina , Hepatitis B/tratamiento farmacológico , Ácidos Grasos Monoinsaturados , Adyuvantes Inmunológicos/uso terapéutico , Células Dendríticas
6.
ACS Nano ; 16(9): 15226-15236, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36018240

RESUMEN

In situ cancer vaccines consisting of antigens and adjuvants are a promising cancer treatment modality; however, the convenient manufacture of vaccines in vivo and their efficient delivery to lymph nodes (LNs) remains a major challenge. Herein, we outline a facile approach to simultaneously achieve the in situ programming of vaccines via two synergetic nanomedicines, Tu-NPFN and Ln-NPR848. Tu-NPFN (∼100 nm) generated a large number of antigens under an alternating magnetic field, and Ln-NPR848 (∼35 nm) encapsulating adjuvant R848 captured a portion of generated antigens for the manufacture of nanovaccines in situ and LN-targeted delivery, which significantly promoted the uptake and maturation of dendritic cells to initiate potent anticancer immune responses. Notably, combined with an anti-CTLA4 antibody (aCTLA-4), this therapy completely eradicated distant tumors in some mice and exerted a long-term immune memory effect on tumor metastasis. This study provides a generalizable strategy for in situ cancer vaccination.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Adyuvantes Inmunológicos , Animales , Antígenos , Inmunoterapia , Ganglios Linfáticos , Ratones , Neoplasias/patología
7.
ACS Nano ; 16(9): 13821-13833, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35993350

RESUMEN

To address the low response rate to immune checkpoint blockade (ICB) therapy, we propose a specific promoter-driven CRISPR/Cas9 system, F-PC/pHCP, that achieves permanent genomic disruption of PD-L1 and elicits a multifaceted anticancer immune response to potentiate immunotherapy. This system consists of a chlorin e6-encapsulated fluorinated dendrimer and HSP70-promoter-driven CRISPR/Cas9. F-PC/pHCP under 660 nm laser activated the HSP70 promoter and enabled the specific expression of the Cas9 protein to disrupt the PD-L1 gene, preventing immune escape. Moreover, F-PC/pHCP also induced immunogenic cell death (ICD) of tumor cells and reprogrammed the immunosuppressive tumor microenvironment. Overall, this specific promoter-driven CRISPR/Cas9 system showed great anticancer efficacy and, more importantly, stimulated an immune memory response to inhibit distant tumor growth and lung metastasis. This CRISPR/Cas9 system represents an alternative strategy for ICB therapy as well as enhanced cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Dendrímeros , Antígeno B7-H1/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad , Factores Inmunológicos , Inmunoterapia , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral/genética
8.
J Control Release ; 345: 494-511, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337940

RESUMEN

Abnormal immune cell functions are commonly related to various diseases, including cancer, autoimmune diseases, and infectious diseases. Messenger RNA (mRNA)-based therapy can regulate the functions of immune cells or assign new functions to immune cells, thereby generating therapeutic immune responses to treat these diseases. However, mRNA is unstable in physiological environments and can hardly enter the cytoplasm of target cells; thus, effective mRNA delivery systems are critical for developing mRNA therapy. The two mRNA vaccines of Pfizer-BioNTech and Moderna have demonstrated that lipid nanoparticles (LNPs) can deliver mRNA into dendritic cells (DCs) to induce immunization against severe acute respiratory syndrome coronavirus 2, which opened the floodgates to the development of mRNA therapy. Apart from DCs, other immune cells are promising targets for mRNA therapy. This review summarized the barriers to mRNA delivery and advances in mRNA delivery for regulating the functions of different immune cells.


Asunto(s)
COVID-19 , Nanopartículas , COVID-19/terapia , Vacunas contra la COVID-19 , Humanos , Liposomas , ARN Mensajero/genética , SARS-CoV-2/genética
9.
ACS Appl Mater Interfaces ; 13(25): 29424-29438, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34129318

RESUMEN

Efficient capture and presentation of tumor antigens by antigen-presenting cells (APCs), especially dendritic cells (DCs), are crucial for activating the anti-tumor immunity. However, APCs are immunosuppressed in the tumor microenvironment, which hinders the tumor elimination. To reprogram APCs for inducing strong anti-tumor immunity, we report here a co-delivery immunotherapeutic strategy targeting the phagocytosis checkpoint (signal regulatory protein α, SIRPα) and stimulator of interferon genes (STING) of APCs to jointly enhance their ability of capturing and presenting tumor antigens. In brief, a small interfering RNA targeting SIRPα (siSIRPα) and a STING agonist (cGAMP) were co-delivered into APCs by the encapsulation into poly(ethylene glycol)-b-poly(lactide-co-glycolide)-based polymeric nanoparticles (NPsiSIRPα/cGAMP). siSIRPα-mediated SIRPα silence promoted APCs to actively capture tumor antigens by engulfing tumor cells. The cGAMP-stimulated STING signaling pathway further enhanced the functions of APCs, thereby increased the activation and expansion of CD8+ T cells. Using ovalbumin (OVA)-expressing melanoma as a model, we demonstrated that NPsiSIRPα/cGAMP stimulated the activation of OVA-specific CD8+ T cells and induced holistic anti-tumor immune responses by reversing the immunosuppressive phenotype of APCs. Collectively, this co-delivery strategy synergistically enhanced the functions of APCs and can be extended to the treatment of tumors with poor immunogenicity.


Asunto(s)
Antineoplásicos , Inmunoterapia/métodos , Proteínas de la Membrana , Receptores Inmunológicos/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Células Cultivadas , Masculino , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Neoplasias Experimentales , Nucleótidos Cíclicos , Fagocitosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
10.
Adv Healthc Mater ; 10(11): e2002139, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33870637

RESUMEN

Considerable breakthroughs in the treatment of malignant tumors using antibody drugs, especially immunomodulating monoclonal antibodies (mAbs), have been made in the past decade. Despite technological advancements in antibody design and manufacture, multiple challenges face antibody-mediated cancer therapy, such as instability in vivo, poor tumor penetration, limited response rate, and undesirable off-target cytotoxicity. In recent years, an increasing number of biomaterials-based delivery systems have been reported to enhance the antitumor efficacy of antibody drugs. This review summarizes the advances and breakthroughs in integrating biomaterials with therapeutic antibodies for enhanced cancer therapy. A brief introduction to the principal mechanism of antibody-based cancer therapy is first established, and then various antibody immobilization strategies are provided. Finally, the current state-of-the-art in biomaterials-based antibody delivery systems and their applications in cancer treatment are summarized, highlighting how the delivery systems augment the therapeutic efficacy of antibody drugs. The outlook and perspective on biomaterials-based delivery of antitumor antibodies are also discussed.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias , Anticuerpos Monoclonales/uso terapéutico , Materiales Biocompatibles/uso terapéutico , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico
11.
Nat Commun ; 12(1): 1359, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649336

RESUMEN

Modulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the co-engagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an 'adaptor' while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (αFc) onto the nanoparticle surface (αFc-NP), and confirm that αFc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Inmunomodulación , Inmunoterapia , Nanopartículas/química , Neoplasias/inmunología , Neoplasias/terapia , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Femenino , Proteínas Inmovilizadas/metabolismo , Inmunidad , Células Asesinas Naturales/inmunología , Masculino , Ratones Endogámicos C57BL , Nanopartículas/ultraestructura , Linfocitos T/inmunología
12.
Adv Drug Deliv Rev ; 168: 3-29, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759123

RESUMEN

The CRISPR-Cas system initiated a revolution in genome editing when it was, for the first time, demonstrated success in the mammalian cells. Today, scientists are able to readily edit genomes, regulate gene transcription, engineer posttranscriptional events, and image nucleic acids using CRISPR-Cas-based tools. However, to efficiently transport CRISPR-Cas into target tissues/cells remains challenging due to many extra- and intra-cellular barriers, therefore largely limiting the applications of CRISPR-based therapeutics in vivo. In this review, we summarize the features of plasmid-, RNA- and ribonucleoprotein (RNP)-based CRISPR-Cas therapeutics. Then, we survey the current in vivo delivery systems. We specify the requirements for efficient in vivo delivery in clinical settings, and highlight both efficiency and safety for different CRISPR-Cas tools.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Sistemas de Liberación de Medicamentos , Epigenoma/genética , Exosomas/metabolismo , Redes Reguladoras de Genes/fisiología , Vectores Genéticos/metabolismo , Lípidos/química , Nanopartículas/química , ARN/metabolismo , Transcripción Genética/fisiología
13.
ACS Appl Mater Interfaces ; 12(43): 48259-48271, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33070614

RESUMEN

Nanotechnology has shown great promise in treating diverse diseases. However, developing nanomedicines that can cure autoimmune diseases without causing systemic immunosuppression is still quite challenging. Herein, we propose an all-in-one nanomedicine comprising an autoantigen peptide and CRISPR-Cas9 to restore specific immune tolerance by engineering dendritic cells (DCs) into a tolerogenic phenotype, which can expand autoantigen-specific regulatory T (Treg) cells. In brief, we utilized cationic lipid-assisted poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles to simultaneously encapsulate an autoimmune diabetes-relevant peptide (2.5mi), a CRISPR-Cas9 plasmid (pCas9), and three guide RNAs (gRNAs) targeting costimulatory molecules (CD80, CD86, and CD40). We demonstrated that the all-in-one nanomedicine was able to effectively codeliver these components into DCs, followed by simultaneous disruption of the three costimulatory molecules and presentation of the 2.5mi peptide on the genome-edited DCs. The resulting tolerogenic DCs triggered the generation and expansion of autoantigen-specific Treg cells by presenting the 2.5mi peptide to CD4+ T cells in the absence of costimulatory signals. Using autoimmune type 1 diabetes (T1D) as a typical disease model, we demonstrated that our nanomedicine prevented autoimmunity to islet components and inhibited T1D development. Our all-in-one nanomedicine achieved codelivery of CRISPR-Cas9 and the peptide to DCs and could be easily applied to other autoimmune diseases by substitution of different autoantigen peptides.


Asunto(s)
Autoantígenos/inmunología , Sistemas CRISPR-Cas/inmunología , Nanomedicina , Péptidos/inmunología , Animales , Ingeniería Celular , Células Cultivadas , Células Dendríticas , Humanos , Tolerancia Inmunológica , Ratones , Ratones Endogámicos NOD , Tamaño de la Partícula , Propiedades de Superficie
14.
Biomater Sci ; 8(23): 6683-6694, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33089844

RESUMEN

Studies have shown that the simultaneous regulation of tumor cell proliferation and the suppressive tumor immune microenvironment (TIME) could achieve better therapeutic effects. However, the targets of the proliferation and the TIME are different, which greatly limits the development of cancer therapy. A recent study found CD155, a highly expressed poliovirus receptor in melanoma cells and melanoma-infiltrating macrophages, functions as both an oncogene and immune checkpoint. Thus, it is supposed that targeting CD155 could bring dual therapeutic effects. Herein, we propose silencing the CD155 of melanoma cells and melanoma-infiltrating macrophages by a nanoparticle-delivered small interference RNA (siRNA) targeting CD155 (siCD155). We encapsulated siCD155 into cationic lipid-assisted nanoparticles (CLANsiCD155) and demonstrated that the intravenous injection of CLANsiCD155 could efficiently deliver siCD155 into melanoma cells and melanoma-infiltrating macrophages. The downregulation of CD155 in melanoma cells directly inhibited their proliferation, and meanwhile, the downregulation of CD155 in melanoma-infiltrating macrophages increased the activation of NK cells and T cells. Owing to this dual effect, CLANsiCD155 significantly inhibited the growth of B16-F10 melanoma. Our study suggests that nanoparticle-delivered siCD155 may be a simple but effective strategy for inhibiting tumor proliferation and reprogramming TIME.


Asunto(s)
Melanoma , Nanopartículas , ARN Interferente Pequeño , Receptores Virales , Neoplasias Cutáneas , Animales , Proliferación Celular , Melanoma/terapia , ARN Interferente Pequeño/genética , Neoplasias Cutáneas/terapia , Microambiente Tumoral
16.
Biomater Sci ; 7(11): 4698-4707, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31495833

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disease that can cause irreversible joint deformity. There is still no cure for RA, and current therapeutics, including methotrexate and adalimumab, cause serious off-target effects and systemic immunosuppression, which in turn increases the risk of infection. Bruton's tyrosine kinase (BTK) in macrophages and B cells has been demonstrated to be a promising therapeutic target for RA. However, high doses of BTK inhibitors are required for efficient BTK suppression, which limits their clinical use. Small interfering RNA (siRNA) is promising for the silencing of specific genes and has been used for the treatment of multiple diseases. To deliver siRNA into macrophages and B cells for BTK gene silencing, we employed cationic lipid-assisted PEG-b-PLGA nanoparticles (CLANs) to encapsulate siRNA. We demonstrated that macrophages and B cells were able to efficiently ingest the CLANs both in vitro and in vivo. Thereafter, we encapsulated siRNA targeting BTK (siBTK) into the CLANs, denoted as CLANsiBTK, and demonstrated that CLANsiBTK significantly inhibited BTK expression in macrophages and B cells. In a collagen-induced mouse arthritis model, CLANsiBTK treatment dramatically reduced joint inflammation and other RA symptoms but showed no toxicity, proving that using CLANsiBTK is a promising approach for RA therapy.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Nanopartículas/química , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/farmacología , Animales , Artritis Reumatoide/metabolismo , Ratones
17.
ACS Nano ; 13(8): 8648-8658, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31328920

RESUMEN

Lymph nodes (LNs) are normally the primary site of tumor metastasis, and effective delivery of chemotherapeutics into LNs through systemic administration is critical for metastatic cancer treatment. Here, we uncovered that improved perfusion in a primary tumor facilitates nanoparticle translocation to LNs for inhibiting tumor metastasis. On the basis of our finding that an iCluster platform, which undergoes size reduction from ∼100 nm to ∼5 nm at the tumor site, markedly improved particle perfusion in the interstitium of the primary tumor, we further revealed in the current study that such tumor-specific size transition promoted particle intravasation into tumor lymphatics and migration into LNs. Quantitative analysis indicated that the drug deposition in LNs after iCluster treatment was significantly higher in the presence of a primary tumor in comparison with that after primary tumor resection. Early intervention of metastatic 4T1 tumors with iCluster chemotherapy and subsequent surgical resection of the primary tumor resulted in significantly extending animal survival, with 4 out of the 10 mice remaining completely tumor-free for 110 days. Additionally, in the more clinical relevant late metastatic model, iCluster inhibited the metastatic colonies to the lungs and extended animal survival time. This finding provides insights into the design of more effective nanomedicines for treating metastatic cancer.


Asunto(s)
Metástasis Linfática/terapia , Nanopartículas/uso terapéutico , Neoplasias/terapia , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Xenoinjertos , Humanos , Metástasis Linfática/patología , Ratones , Invasividad Neoplásica/patología , Neoplasias/patología
18.
Biomaterials ; 217: 119302, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31271858

RESUMEN

Organ transplantation is the only effective method to treat end-stage organ failure. However, it is continuously plagued by immune rejection, which is mostly caused by T cell-mediated reactions. Dendritic cells (DCs) are professional antigen-presenting cells, and blocking the costimulatory signaling molecule CD40 in DCs inhibits T cell activation and induces transplant tolerance. In this study, to relieve graft rejection, Cas9 mRNA (mCas9) and a guide RNA targeting the costimulatory molecule CD40 (gCD40) were prepared and encapsulated into poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-b-PLGA)-based cationic lipid-assisted nanoparticles (CLAN), denoted CLANmCas9/gCD40. CLAN effectively delivered mCas9/gCD40 into DCs and disrupted CD40 in DCs at the genomic level both in vitro and in vivo. After intravenous injection into an acute mouse skin transplant model, CLANmCas9/gCD40-mediated CD40 disruption significantly inhibited T cell activation, which reduced graft damage and prolonged graft survival. This work provides a promising strategy for reprogramming DCs with nanoparticles carrying the CRISPR/Cas9 system to abate transplant rejection.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Células Dendríticas/inmunología , Nanomedicina , Tolerancia al Trasplante/inmunología , Animales , Antígenos CD40/metabolismo , Modelos Animales de Enfermedad , Endocitosis , Rechazo de Injerto/inmunología , Supervivencia de Injerto/inmunología , Activación de Linfocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Guía de Kinetoplastida/metabolismo
19.
Small ; 15(16): e1900055, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30884095

RESUMEN

Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.


Asunto(s)
Lactatos/química , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/terapia , Ácidos Nucleicos/uso terapéutico , Polietilenglicoles/química , Animales , Sistemas CRISPR-Cas , Edición Génica , Corazón/fisiología , Humanos , Sistema Inmunológico , Macrófagos del Hígado/metabolismo , Lípidos/química , Sustancias Macromoleculares , Neoplasias/metabolismo , Células Madre Neoplásicas/citología , Ácidos Nucleicos/química , Pez Cebra
20.
Biomaterials ; 182: 104-113, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114562

RESUMEN

Engineering nanoparticles of reasonable surface poly(ethylene glycol) (PEG) length is important for designing efficient drug delivery systems. Eliminating the disturbance by other nanoproperties, such as size, PEG density, etc., is crucial for systemically investigating the impact of surface PEG length on the biological behavior of nanoparticles. In the present study, nanoparticles with different surface PEG length but similar other nanoproperties were prepared by using poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers of different molecular weights and incorporating different contents of PCL3500 homopolymer. The molecular weight of PEG block in PEG-PCL was between 3400 and 8000 Da, the sizes of nanoparticles were around 100 nm, the terminal PEG density was controlled at 0.4 PEG/nm2 (or the frontal PEG density was controlled at 0.16 PEG/nm2). Using these nanoproperties well-designed nanoparticles, we demonstrated PEG length-dependent changes in the biological behaviors of nanoparticles and exhibited nonmonotonic improvements as the PEG molecular weight increased from 3400 to 8000 Da. Moreover, under the experimental conditions, we found nanoparticles with a surface PEG length of 13.8 nm (MW = 5000 Da) significantly decreased the absorption with serum protein and interaction with macrophages, which led to prolonged blood circulation time, enhanced tumor accumulation and improved antitumor efficacy. The present study will help to establish a relatively precise relationship between surface PEG length and the in vivo behavior of nanoparticles.


Asunto(s)
Antineoplásicos/administración & dosificación , Docetaxel/administración & dosificación , Portadores de Fármacos/química , Lactonas/química , Nanopartículas/química , Polietilenglicoles/química , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Docetaxel/farmacocinética , Docetaxel/uso terapéutico , Portadores de Fármacos/metabolismo , Femenino , Lactonas/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Peso Molecular , Nanopartículas/metabolismo , Neoplasias/tratamiento farmacológico , Polietilenglicoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...