Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(40): 21760-21765, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782691

RESUMEN

A concise and enantioselective total synthesis of the Veratrum alkaloid cyclopamine is disclosed. This highly convergent synthesis with a 16-step longest linear sequence (LLS) was enabled by a de novo synthesis of the trans-6,5-heterobicycle via a strain-inducing halocyclization process, a key Tsuji-Trost cyclization to construct the fully substituted, spirocyclic THF motif with exquisite diastereocontrol, and a late-stage ring-closing metathesis (RCM) reaction to forge the central tetrasubstituted olefin.


Asunto(s)
Alquenos , Alcaloides de Veratrum , Ciclización , Estereoisomerismo
2.
Exp Ther Med ; 23(1): 14, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34815766

RESUMEN

Perfluorooctane sulfonate (PFOS) is a persistent pollutant that exerts toxicity and induces cardiogenesis in humans and animals. Yet, the effect of PFOS exposure on cardiac toxicity in adult rats has, to our knowledge, not been reported and the mechanism still remains unknown. The present study aimed to investigate the toxicity of PFOS on rat hearts and any associated mechanisms. Rats were exposed to 0 (control), 1 and 10 mg/kg PFOS every other day for 14 days. Body weight and heart weight were recorded. The serum levels of lactic dehydrogenase (LDH), creatine kinase (CK), creatine kinase-isoenzyme-MB (CK-MB) and cardiac troponin-T (cTn-T) in heart tissues were measured using biochemical assays. TUNEL staining and western blotting were applied to analyze levels of apoptosis in rat hearts. Pathological assessment and immunohistochemistry analysis of heart tissues were used to evaluate the levels of PFOS-induced cardiotoxicity and inflammatory infiltration. PFOS exposure at the dosage of 10 mg/kg significantly increased the percentage of heart to body weight; however, it did not alter the body weight. At 10 mg/kg, PFOS significantly increased expression levels of myocardial injury markers, such as cTn-T, LDH, CK and CK-MB, while 1 mg/kg PFOS upregulated the expression level of cTn-T in rats. Notably, cardiac fibrosis and myocardiac hypertrophy appeared in the 10 mg/kg PFOS group. In addition, TUNEL-positive cells were significantly increased by exposure to 10 mg/kg PFOS in rat heart tissues. The protein expressions profiles of p53 and Bax were also significantly upregulated in the 10 mg/kg PFOS group. Inflammatory infiltration, detected by anaylzing expression levels of IL-1ß and TNF-α, was significantly raised by 10 mg/kg PFOS exposure. In conclusion, these results demonstrated that 10 mg/kg PFOS-induced cardiac toxicity in rats, which was associated with an increase in apoptosis and the expression of proinflammatory cytokines.

3.
J Am Chem Soc ; 142(12): 5785-5792, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32109356

RESUMEN

Phosphorus Incorporation (PI, abbreviated Π) reagents for the modular, scalable, and stereospecific synthesis of chiral phosphines and methylphosphonate nucleotides are reported. Synthesized from trans-limonene oxide, this reagent class displays an unexpected reactivity profile and enables access to chemical space distinct from that of the Phosphorus-Sulfur Incorporation reagents previously disclosed. Here, the adaptable phosphorus(V) scaffold enables sequential addition of carbon nucleophiles to produce a variety of enantiopure C-P building blocks. Addition of three carbon nucleophiles to Π, followed by stereospecific reduction, affords useful P-chiral phosphines; introduction instead of a single methyl group reveals the first stereospecific synthesis of methylphosphonate oligonucleotide precursors. While both Π enantiomers are available, only one isomer is required-the order of nucleophile addition controls the absolute stereochemistry of the final product through a unique enantiodivergent design.


Asunto(s)
Oligonucleótidos/síntesis química , Organofosfonatos/síntesis química , Fosfinas/síntesis química , Monoterpenos Ciclohexánicos/química , Indicadores y Reactivos/química , Oxidación-Reducción , Estereoisomerismo
4.
Neurosci Lett ; 698: 69-75, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30593874

RESUMEN

In the current study, we aimed to analyze the lipid changes in the dorsal root ganglion (DRG) after sciatic nerve transection (SNT) using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). We found that the arachidonic acid-containing phosphatidylcholine (AA-PC), PC(16:0/20:4) largely increased, while PC(16:0/18:1), PC(18:0/18:1) and phosphatidic acid (PA)(36:2) levels largely decreased in the DRG following nerve injury. Previous studies show that the increase in PC(16:0/20:4) was associated with neuropathic pain and that decrease in PC(16:0/18:1), PC(18:0/18:1), and PA(36:2) were due to producing lysophosphatidic acid (LPA), an initiator for neuropathic pain. These results suggest that the lipid changes in DRG after SNT could be the result of changes for the cause of neuropathic pain. Thus, blocking of LPA could be potential for treatment of neuropathic pain.


Asunto(s)
Ácido Araquidónico/metabolismo , Ganglios Espinales/metabolismo , Lisofosfolípidos/metabolismo , Fosfatidilcolinas/metabolismo , Animales , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Ácidos Fosfatidicos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo
5.
J Am Chem Soc ; 139(44): 15640-15643, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29068666

RESUMEN

The first examples of kinetically controlled cross-metathesis reactions that generate Z- or E-trisubstituted alkenes are disclosed. Transformations are catalyzed by ≤6.0 mol % of a Ru catechothiolate complex and afford trisubstituted allylic alcohols and ethers in up to 81% yield and >98% stereoisomeric purity. The method has considerable scope, as olefins containing an alcohol, an aldehyde, an epoxide, a carboxylic acid, or an alkenyl group may be used. Mechanistic models that account for the observed levels and trends in efficiency and stereochemical control are provided, based on DFT studies.

6.
J Orthop Sci ; 22(6): 1102-1106, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28890224

RESUMEN

BACKGROUND: In total hip arthroplasty (THA) surgery, hip muscle preservation is important in strengthening the stability of the hip and improving the activities of the patient. However, whether the type of femoral stem affects the recovery of the hip muscles remains unknown. The aim of this study was to compare the postoperative hip muscle recovery among femoral stem varieties after THA. METHODS: The computed tomography (CT) images of 44 patients (44 hips) who underwent THA using an anterolateral approach were reviewed. Twenty-two patients received a fit-and-fill (FF) stem and 22 received the tapered-wedge (TW) stem. The volumes of the gluteus maximus (GMA), gluteus medius (GME), and obturator internus (OI) were measured on three-dimensional models reconstructed using preoperative and 6-month postoperative CT images. Relationships between muscle volume changes and factors including the femoral stem length were evaluated. RESULTS: The GMA and GME volumes increased postoperatively by 8.2% and 8.3%, respectively, in the FF stem group and 7% and 6%, respectively, in the TW stem group, with no group differences. In contrast, the OI volume decreased postoperatively by 17.8% in the FF group and was preserved in TW group (p < 0.001). Moreover, OI volume was decreased in 19 patients (86%) in the FF group and in 11 patients (50%) in the TW group (p = 0.01). The normalized stem length was significantly associated with the postoperative change in OI volume (r = -0.45, p = 0.002). CONCLUSIONS: The TW stem showed a significant advantage over the FF stem in terms of OI preservation. Surgeons should pay close attention during surgery to avoid OI injury when using different femoral stem types. We suggest that a short and reduced lateral shoulder femoral stem is a better choice for the preservation of external rotation muscles.


Asunto(s)
Artroplastia de Reemplazo de Cadera/instrumentación , Prótesis de Cadera , Osteoartritis de la Cadera/cirugía , Diseño de Prótesis , Músculos Psoas/anatomía & histología , Artroplastia de Reemplazo de Cadera/métodos , Nalgas , Estudios de Cohortes , Femenino , Humanos , Masculino , Tamaño de los Órganos , Osteoartritis de la Cadera/diagnóstico por imagen , Dimensión del Dolor , Posicionamiento del Paciente , Pronóstico , Falla de Prótesis , Rango del Movimiento Articular/fisiología , Estudios Retrospectivos , Medición de Riesgo , Índice de Severidad de la Enfermedad , Muslo , Tomografía Computarizada por Rayos X/métodos , Resultado del Tratamiento
7.
PLoS One ; 12(5): e0177595, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542572

RESUMEN

Peripheral nerve injury induces substantial molecular changes in the somatosensory system that leads to maladaptive plasticity and cause neuropathic pain. Understanding the molecular pathways responsible for the development of neuropathic pain is essential to the development of novel rationally designed therapeutics. Although lipids make up to half of the dry weight of the spinal cord, their relation with the development of neuropathic pain is poorly understood. We aimed to elucidate the regulation of spinal lipids in response to neuropathic peripheral nerve injury in mice by utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry, which allows visualization of lipid distribution within the cord. We found that arachidonic acid (AA) containing [PC(diacyl-16:0/20:4)+K]+ was increased temporarily at superficial ipsilateral dorsal horn seven days after spared nerve injury (SNI). The spatiotemporal changes in lipid concentration resembled microglia activation as defined by ionized calcium binding adaptor molecule 1 (Iba1) immunohistochemistry. Suppression of microglial function through minocycline administration resulted in attenuation of hypersensitivity and reduces [PC(diacyl-16:0/20:4)+K]+ elevation in the spinal dorsal horn. These data suggested that AA containing [PC(diacyl-16:0/20:4)+K]+ is related to hypersensitivity evoked by SNI and implicate microglial cell activation in this lipid production.


Asunto(s)
Ácido Araquidónico/metabolismo , Microglía/metabolismo , Fosfatidilcolinas/metabolismo , Nervio Ciático/lesiones , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Minociclina/farmacología , Neuralgia/etiología , Neuralgia/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Asta Dorsal de la Médula Espinal/efectos de los fármacos
8.
Nature ; 541(7637): 380-385, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28068669

RESUMEN

Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: the potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization-a particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib-a potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis-was prepared by RCM carried out at a substrate concentration 20 times greater than when a ruthenium carbene was used.


Asunto(s)
Alquenos/química , Alquenos/síntesis química , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/síntesis química , Lactonas/química , Lactonas/síntesis química , Compuestos Macrocíclicos/química , Pirimidinas/química , Pirimidinas/síntesis química , Antineoplásicos/síntesis química , Antineoplásicos/química , Catálisis , Ciclización , Cinética , Estructura Molecular , Molibdeno/química , Compuestos Organometálicos/química , Rutenio/química , Estereoisomerismo
9.
Sci Rep ; 6: 26427, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27210057

RESUMEN

Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-containing phosphatidylcholine (AA-PC), [PC(16:0/20:4)+K](+), was significantly increased in the ipsilateral ventral and dorsal horns of the spinal cord after sciatic nerve transection, and the increased expression of [PC(16:0/20:4)+K](+) spatiotemporally resembled the increase of reactive microglia and the astrocytes. From the lipidomics point of view, we conclude that [PC(16:0/20:4)+K](+) could be the main phospholipid in the spinal cord influenced by PNI, and the regulation of specific phospholipid molecule in the CNS after PNI is associated with the reactive microglia and astrocytes.


Asunto(s)
Ácido Araquidónico/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Fosfatidilcolinas/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Metabolismo de los Lípidos , Ratones , Traumatismos de los Nervios Periféricos/etiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Médula Espinal/citología , Médula Espinal/metabolismo
10.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(3): 257-64, 2014 05.
Artículo en Chino | MEDLINE | ID: mdl-24998647

RESUMEN

OBJECTIVE: To investigate the antioxidative effects of two cysteinyl leukotriene receptors antagonists (CysLT1R and CysLT2R) montelukast and HAMI 3379 on ischemic injury of rat cortical neurons in vitro. METHODS: Cultured rat cortical neurons were pretreated with CysLT1R antagonist montelukast and CysLT2R antagonist HAMI 3379, and then exposed to oxygen-glucose deprivation/recovery (OGD/R)or H2O2. Reactive oxygen species (ROS) mitochondrial membrane potential (MMP) depolarization, neuronal viability and lactate dehydrogenase (LDH) release were determined. Meanwhile, RNA interference was used to inhibit the expression of CysLT1R and CysLT2R,and the effects were observed. RESULTS: ROS production in neurons was significantly increased after 1 h OGD, which reached the peak at 30 min and lasted for 1.5 h after recovery. Montelukast and HAMI 3379 at 0.01-1µmol/L moderately decreased OGD/R-induced ROS production (P<0.05). Montelukast mildly attenuated OGD/R-induced MMP depolarization (P<0.05),but HAMI 3379 had no effect. H2O2 reduced neuronal viability and increased LDH release, namely inducing neuronal injury. Montelukast and HAMI 3379 at 0.1-1µmol/L moderately attenuated H2O2-induced neuronal injury (P<0.05). However, both CysLT1R siRNA and CysLT2R shRNA did not significantly affect the responses mentioned above. CONCLUSION: In ischemic neuronal injury, montelukast and HAMI 3379 exert a moderate antioxidative effect, and this effect may be receptor-independent.


Asunto(s)
Acetatos/farmacología , Antioxidantes/farmacología , Ácidos Ciclohexanocarboxílicos/farmacología , Neuronas/efectos de los fármacos , Ácidos Ftálicos/farmacología , Quinolinas/farmacología , Animales , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Ciclopropanos , Antagonistas de Leucotrieno/farmacología , Neuronas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sulfuros
11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(3): 265-72, 2014 05.
Artículo en Chino | MEDLINE | ID: mdl-24998648

RESUMEN

OBJECTIVE: To investigate the protective effect of histone deacetylase inhibitor NL101 on L-homocysteine (HCA)-induced toxicity in rat neurons, and the toxic effect on normal rat neurons. METHODS: In the presence of NL101 at various concentrations, HCA (5 mmol/L)-induced changes in cell density, necrosis, and viability were determined in the mixed cultures of rat cortical cells and the primary cultures of rat neurons. The direct effect of NL101 on primary neurons was also observed in the absence of HCA. Histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) was used as the control. After the treatments, cell viability, the density, and morphology of neurons and glial cells, and cell necrosis were determined. RESULTS: In the mixed cultures of cortical cells, NL101 had no effect on HCA (5 mmol/L)-induced cell number reduction at 0.001-10µmol/L; however, it significantly attenuated necrosis at 1-10 µmol/L, and increased neuronal number at 1 µmol/L. NL101 had no effect on the mixed cortical cells in the absence of HCA. In the primary neurons, NL101 reduced neuronal viability and mildly increased necrosis at 1-10 µmol/L in the absence of HCA, while it significantly attenuated HCA-induced neuronal viability reduction at 0.01-10 µmol/L and reduced neuronal necrosis at 1-10 µmol/L. The effects of NL101 were apparently similar to those of SAHA. CONCLUSION: NL101 has protective effect on HCA-induced neuronal injury but it is neurotoxic at high concentrations, which is similar to the typical histone deacetylase inhibitor SAHA.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Neuronas/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ratas
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(3): 273-80, 2014 05.
Artículo en Chino | MEDLINE | ID: mdl-24998649

RESUMEN

OBJECTIVE: To examine the effect of a selective inhibitor of 5-lipoxygenase (5-LOX) zileuton on microglia-mediated rotenone neurotoxicity. METHODS: The supernatant from different concentrations of rotenone-stimulated mouse microglia BV2 cells was used as the conditioned media (CM) for PC12 cells. The viability of PC12 cells was determined by MTT assay and lactate dehydrogenase (LDH) release. Cell death was observed by LDH release and double fluorescence staining with Hoechst/propidiumiodide (PI). The effect of zileuton on microglia-mediated rotenone toxicity was evaluated by the above methods. RESULTS: Rotenone at 1-10 nmol/L was nontoxic to PC12 cells directly. However, the CM from BV2 cells that were treated with rotenone (1-10 nmol/L) resulted in toxicity of PC12 cells. The BV2 CM which stimulated with rotenone (1-10 nmol/L) induced morphological changes, reduced cell viability, and increased LDH release and cell necrosis in PC12 cells. Pretreatment of BV2 cells with the 5-LOX inhibitor zileuton (0.01-1 µmol/L) protected PC12 cells from the microglia-mediated rotenone toxicity. CONCLUSION: The 5-LOX inhibitor zileuton effectively attenuates microglia-mediated rotenone toxicity in PC12 cells. These results suggest that 5-LOX pathway may be involved in neuronal death induced by microglial inflammation.


Asunto(s)
Hidroxiurea/análogos & derivados , Microglía/citología , Rotenona/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Hidroxiurea/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Ratones , Células PC12 , Ratas
13.
Brain Res ; 1572: 59-71, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24858057

RESUMEN

The 5-lipoxygenase (5-LOX) products cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators. CysLTs mediate their biological actions through activating CysLT receptors (CysLT(1)R and CysLT(2)R). We have recently reported that 5-LOX and CysLT(1)R mediated PC12 cell injury induced by high concentrations of rotenone (0.3-10 µM), which was reduced by the selective 5-LOX inhibitor zileuton and CysLT(1)R antagonist montelukast. The purpose of this study was to examine the regulatory roles of the 5-LOX/CysLT(1)R pathway in microglial activation induced by low concentration rotenone. After mouse microglial BV2 cells were stimulated with rotenone (0.3-3 nM), phagocytosis and release of pro-inflammatory cytokine were assayed as indicators of microglial activation. We found that rotenone (1 and 3 nM) increased BV2 microglial phagocytosis and the release of the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Zileuton and montelukast prevented rotenone (3 nM)-induced phagocytosis and cytokine release. Furthermore, rotenone significantly up-regulated 5-LOX expression, induced 5-LOX translocation to the nuclear envelope, and increased the production of CysLTs. These responses were inhibited by zileuton. Rotenone also increased CysLT(1)R expression and induced nuclear translocation of CysLT(1)R. In primary rat microglia, rotenone (10 nM) increased release of IL-1ß and TNF-α, whereas zileuton (0.1 µΜ) and montelukast (0.01 µΜ) significantly inhibited this response. These results indicated that 5-LOX and CysLT(1)R might be key regulators of microglial activation induced by low concentration of rotenone. Interference of 5-LOX/CysLT(1)R pathway may be an effective therapeutic strategy for microglial inflammation.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Receptores de Leucotrienos/metabolismo , Rotenona/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Ratones , Microglía/enzimología , Fagocitosis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
14.
Acta Pharmacol Sin ; 35(1): 33-40, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24141567

RESUMEN

AIM: To investigate the roles of cysteinyl leukotriene receptors CysLT1R and CysLT2R in leukotriene D4 (LTD4)-induced activation of microglial cells in vitro. METHODS: Mouse microglial cell line BV2 was transfected with pcDNA3.1(+)-hCysLT1R or pcDNA3.1(+)-hCysLT2R. The expression of relevant mRNAs and proteins in the cells was detected using RT-PCR and Western blotting, respectively. Phagocytosis was determined with flow cytometry analysis. The release of interleukin-1ß (IL-1ß) from the cells was measured using an ELISA assay. RESULTS: The expression of CysLT1R or CysLT2R was considerably increased in the transfected BV2 cells, and the receptors were mainly distributed in the plasma membrane and cytosol. Treatment of the cells expressing CysLT1R or CysLT2R with CysLT receptor agonist LTD4 (0.1-100 nmol/L) concentration-dependently enhanced the phagocytosis, and increased mRNA expression and release of IL-1ß. Moreover, the responses of hCysLT1R-BV2 cells to LTD4 were significantly larger than those of hCysLT2R-BV2 or WT-BV2 cells. Pretreatment of hCysLT1R-BV2 cells with the selective CysLT1R antagonist montelukast (1 µmol/L) significantly blocked LTD4-induced phagocytosis as well as the mRNA expression and release of IL-1ß, whereas the selective CysLT2R antagonist HAMI 3379 (1 µmol/L) had no such effects. CONCLUSION: CysLT1R mediates LTD4-induced activation of BV2 cells, suggesting that CysLT1R antagonists may exert anti-inflammatory activity in brain diseases.


Asunto(s)
Leucotrieno D4/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Receptores de Leucotrienos/agonistas , Receptores de Leucotrienos/fisiología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Ratones
15.
J Pharmacol Exp Ther ; 346(2): 328-41, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23750020

RESUMEN

The cysteinyl leukotrienes (CysLTs) are inflammatory mediators closely associated with neuronal injury after brain ischemia through the activation of their receptors, CysLT1R and CysLT2R. Here we investigated the involvement of both receptors in oxygen-glucose deprivation/recovery (OGD/R)-induced ischemic neuronal injury and the effect of the novel CysLT2R antagonist HAMI 3379 [3-({[(1S,3S)-3- carboxycyclohexyl]amino}carbonyl)-4-(3-{4-[4-(cyclo-hexyloxy)butoxy]phenyl}propoxy)benzoic acid] in comparison with the CysLT1R antagonist montelukast. In primary neurons, neither the nonselective agonist leukotriene D4 (LTD4) nor the CysLT2R agonist N-methyl-leukotriene C4 (NMLTC4) induced neuronal injury, and HAMI 3379 did not affect OGD/R-induced neuronal injury. However, in addition to OGD/R, LTD4 and NMLTC4 induced cell injury and neuronal loss in mixed cultures of cortical cells, and neuronal loss and necrosis in neuron-microglial cocultures. Moreover, they induced phagocytosis and cytokine release (interleukin-1ß and tumor necrosis factor-α) from primary microglia, and conditioned medium from the treated microglia induced neuronal necrosis. HAMI 3379 inhibited all of these responses, and its effects were the same as those of CysLT2R interference by CysLT2R short hairpin RNA, indicating CysLT2R dependence. In comparison, montelukast moderately inhibited OGD/R-induced primary neuronal injury and most OGD/R- and LTD4-induced (but not NMLTC4-induced) responses in mixed cultures, cocultures, and microglia. The effects of montelukast were both dependent and independent of CysLT1Rs because interference by CysLT1R small interfering RNA had limited effects on neuronal injury in neuron-microglial cocultures and on cytokine release from microglia. Our findings indicated that HAMI 3379 effectively blocked CysLT2R-mediated microglial activation, thereby indirectly attenuating ischemic neuronal injury. Therefore, CysLT2R antagonists may represent a new type of therapeutic agent in the treatment of ischemic stroke.


Asunto(s)
Ácidos Ciclohexanocarboxílicos/farmacología , Antagonistas de Leucotrieno/farmacología , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Ácidos Ftálicos/farmacología , Receptores de Leucotrienos/metabolismo , Acetatos/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Hipoxia de la Célula , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Ciclopropanos , Citocinas/metabolismo , Femenino , Glucosa/metabolismo , Masculino , Microglía/metabolismo , Microglía/patología , Necrosis , Neuronas/metabolismo , Neuronas/patología , Oxígeno/metabolismo , Fagocitosis , Cultivo Primario de Células , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Leucotrienos/agonistas , Sulfuros
16.
Brain Res ; 1484: 57-67, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23000196

RESUMEN

Cysteinyl leukotrienes (CysLTs) induce inflammatory responses by activating their receptors, CysLT(1)R and CysLT(2)R. We recently reported that CysLT(2)R is involved in neuronal injury, astrocytosis and microgliosis after focal cerebral ischemia in rats. Here, we determined whether HAMI 3379, a selective CysLT(2)R antagonist, protects against acute brain injury after focal cerebral ischemia in rats. We induced transient focal cerebral ischemia by 30 min of middle cerebral artery occlusion (MCAO), followed by 24h of reperfusion. HAMI 3379 (1, 10 or 100 ng) was injected intracerebroventricularly (i.c.v.) 30 min before MCAO, and the CysLT(1)R antagonist pranlukast (0.1mg/kg, i.p.) was used as a positive control. HAMI 3379 at 10 and 100 ng (but not at 1 ng) attenuated the neurological deficits, and reduced infarct volume, brain edema, IgG exudation, neuronal degeneration and neuronal loss. This protective effect was similar to that of pranlukast. Thus, HAMI 3339 at 10-100 ng i.c.v. is neuroprotective against acute brain injury after focal cerebral ischemia in rats. These findings suggest therapeutic potential for CysLT(2)R antagonists in the treatment of ischemic stroke.


Asunto(s)
Lesiones Encefálicas/prevención & control , Ácidos Ciclohexanocarboxílicos/administración & dosificación , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Ácidos Ftálicos/administración & dosificación , Receptores de Leucotrienos/metabolismo , Animales , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Inyecciones Intraventriculares , Antagonistas de Leucotrieno/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Leucotrienos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...