Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
JTO Clin Res Rep ; 5(5): 100672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715965

RESUMEN

Introduction: Malignant pleural mesothelioma (MPM) is a rare and universally lethal malignancy with limited treatment options. Immunotherapy with immune checkpoint inhibitors (ICIs) has recently been approved for unresectable MPM, but response to ICIs is heterogeneous, and reliable biomarkers for prospective selection of appropriate subpopulations likely to benefit from ICIs remain elusive. Methods: We performed multiscale integrative analyses of published primary tumor data set from The Cancer Genome Atlas (TCGA) and the French cohort E-MTAB-1719 to unravel the tumor immune microenvironment of MPM deficient in BAP1, one of the most frequently mutated tumor suppressor genes (TSGs) in the disease. The molecular profiling results were validated in independent cohorts of patients with MPM using immunohistochemistry and multiplex immunohistochemistry. Results: We revealed that BAP1 deficiency enriches immune-associated pathways in MPM, leading to increased mRNA signatures of interferon alfa/gamma response, activating dendritic cells, immune checkpoint receptors, and T-cell inflammation. This finding was confirmed in independent patient cohorts, where MPM tumors with low BAP1 levels are associated with an inflammatory tumor immune microenvironment characterized by increased exhausted precursor T-cells and macrophages but decreased myeloid-derived suppressor cells (MDSCs). In addition, BAP1low MPM cells are in close proximity to T cells and therefore can potentially be targeted with ICIs. Finally, we revealed that BAP1-proficient MPM is associated with a hyperactive mitogen-activated protein kinase (MAPK) pathway and may benefit from treatment with MEK inhibitors (MEKis). Conclusion: Our results suggest that BAP1 plays an immunomodulatory role in MPM and that BAP1-deficient MPM may benefit from immunotherapy, which merits further clinical investigation.

2.
Environ Pollut ; 351: 124059, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38703979

RESUMEN

The hazards of man-made chiral compounds are of great public concern, with reports of worrying stereoselective compounds and an urgent need to assess their transport. This study evaluated the transport of 2-arylpropionic acid derivatives enantiomers (2-APA) in porous media under a variety of solution chemistry conditions via column packing assays. The results revealed the introduction of Malic acid (MA) enantiomers enhanced the mobility of 2-APA enantiomers, but the enhancement effect was different for different 2-APA enantiomers. Batch sorption experiments confirmed that the MA enantiomers occupied the sorption site of the quartz sand, thus reducing the deposition of the 2-APA enantiomer. Homo- or heterochirality between 2-APA and MA dominates the transport of 2-APA enantiomers, with homochirality between them triggering stronger retention and vice versa. Further evaluating the effect of solution chemistry conditions on the transport of 2-APA enantiomers, increased ionic strength attenuated the mobility of 2-APA enantiomers, whereas introduced coexisting cations enhanced the retention of 2-APA enantiomers in the column. The redundancy analyses corroborated these solution chemistry conditions were negatively correlated with the transport of 2-APA enantiomers. The coupling of pH and these conditions reveals electrostatic forces dominate the transport behavior and stereoselective interactions of 2-APA enantiomers. Distinguishing the transport of enantiomeric pair helps to understand the difference in stereoselectivity of enantiomers and promises to remove the more hazardous one.

3.
ACS Sens ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695880

RESUMEN

Although electronic textiles that can detect external stimuli show great promise for fire rescue, existing firefighting clothing is still scarce for simultaneously integrating reliable early fire warning and real-time motion sensing, hardly providing intelligent personal protection under complex high-temperature conditions. Herein, we introduce an "all-in-one" hierarchically sandwiched fabric (HSF) sensor with a simultaneous temperature and pressure stimulus response for developing intelligent personal protection. A cross-arranged structure design has been proposed to tackle the serious mutual interference challenge during multimode sensing using two separate sets of core-sheath composite yarns and arrayed graphene-coated aerogels. The functional design of the HSF sensor not only possesses wide-range temperature sensing from 25 to 400 °C without pressure disturbance but also enables highly sensitive pressure response with good thermal adaptability (up to 400 °C) and wide pressure detection range (up to 120 kPa). As a proof of concept, we integrate large-scalable HSF sensors onto conventional firefighting clothing for passive/active fire warning and also detecting spatial pressure and temperature distribution when a firefighter is exposed to high-temperature flames, which may provide a useful design strategy for the application of intelligent firefighting protective clothing.

4.
Adv Mater ; : e2400502, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651254

RESUMEN

Chemotherapy of glioblastoma (GBM) has not yielded success due to inefficient blood-brain barrier (BBB) penetration and poor glioma tissue accumulation. Aerobic glycolysis, as the main mode of energy supply for GBM, safeguards the rapid growth of GBM while affecting the efficacy of radiotherapy and chemotherapy. Therefore, to effectively inhibit aerobic glycolysis, increase drug delivery efficiency and sensitivity, a novel temozolomide (TMZ) nanocapsule (ApoE-MT/siPKM2 NC) is successfully designed and prepared for the combined delivery of pyruvate kinase M2 siRNA (siPKM2) and TMZ. This drug delivery platform uses siPKM2 as the inner core and methacrylate-TMZ (MT) as the shell component to achieve inhibition of glioma energy metabolism while enhancing the killing effect of TMZ. By modifying apolipoprotein E (ApoE), dual targeting of the BBB and GBM is achieved in a "two birds with one stone" style. The glutathione (GSH) responsive crosslinker containing disulfide bonds ensures "directional blasting" cleavage of the nanocapsules to release MT and siPKM2 in the high GSH environment of glioma cells. In addition, in vivo experiments verify that ApoE-MT/siPKM2 NC has good targeting ability and prolongs the survival of tumor-bearing nude mice. In summary, this drug delivery system provides a new strategy for metabolic therapy sensitization chemotherapy.

5.
Mol Pharm ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666508

RESUMEN

Imaging strategies for the specific detection and therapeutic monitoring of myocarditis are still lacking. Stimulator of interferon genes (STING) is a signal transduction molecule involved in an innate immune response. Here, we evaluated the feasibility of the recently developed STING-targeted radiotracer [18F]FBTA for positron emission tomography (PET) imaging to detect myocardial inflammation and monitor treatment in myocarditis mice. [18F]FBTA-PET imaging was performed in myocarditis mice and normal mice to verify the specificity of [18F]FBTA for the diagnosis of myocarditis. We also performed PET imaging in mice with myocarditis treated to verify the ability of [18F]FBTA in therapeutic monitoring. The expression of STING and inflammatory cell types was confirmed by flow cytometry and immunohistochemistry. [18F]FDG-PET imaging of myocarditis was used as a contrast. [18F]FBTA-PET imaging showed that the average radioactive uptake was significantly higher in the hearts of the myocarditis group than in the control group. STING was highly overexpressed in cardiac inflammatory cells, including macrophages, dendritic cells (DCs), and T cells. However, there was no significant difference in cardiac radiotracer uptake of [18F]FDG between the myocarditis group and the control group. Moreover, cardiac uptake of [18F]FBTA was significantly reduced in cyclosporin A-treated myocarditis mice and myocardial STING expression was also significantly reduced after the treatment. Overall, we showed that a STING-targeted PET tracer [18F]FBTA can be used to monitor changes in the inflammatory microenvironment in myocarditis. Besides, [18F]FBTA-PET is also suitable for real-time monitoring of myocarditis treatment, representing a promising diagnostic and therapeutic monitoring approach for myocarditis.

6.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38597954

RESUMEN

Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Macrófagos , Inflamación , ARN Viral , Pulmón
7.
bioRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562797

RESUMEN

Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in biosynthesis of taurine from cysteine as well as the downstream derivatization of taurine into secondary taurine metabolites4,5. One such taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by diverse physiologic perturbations that alter taurine and/or acetate flux, including endurance exercise7, nutritional taurine supplementation8, and alcohol consumption6,9. While taurine N-acetyltransferase activity has been previously detected in mammalian cells6,7, the molecular identity of this enzyme, and the physiologic relevance of N-acetyltaurine, have remained unknown. Here we show that the orphan body mass index-associated enzyme PTER (phosphotriesterase-related)10 is the principal mammalian taurine N-acetyltransferase/hydrolase. In vitro, recombinant PTER catalyzes bidirectional taurine N-acetylation with free acetate as well as the reverse N-acetyltaurine hydrolysis reaction. Genetic ablation of PTER in mice results in complete loss of tissue taurine N-acetyltransferase/hydrolysis activities and systemic elevation of N-acetyltaurine levels. Upon stimuli that increase taurine levels, PTER-KO mice exhibit lower body weight, reduced adiposity, and improved glucose homeostasis. These phenotypes are recapitulated by administration of N-acetyltaurine to wild-type mice. Lastly, the anorexigenic and anti-obesity effects of N-acetyltaurine require functional GFRAL receptors. Together, these data uncover enzymatic control of a previously enigmatic pathway of secondary taurine metabolism linked to energy balance.

8.
Cell Rep ; 43(4): 113991, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573855

RESUMEN

The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.


Asunto(s)
Corteza Somatosensorial , Animales , Ratones , Corteza Somatosensorial/fisiología , Masculino , Tacto/fisiología , Ratones Endogámicos C57BL , Optogenética , Percepción del Tacto/fisiología , Conducta Animal , Femenino
9.
World J Diabetes ; 15(3): 530-551, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591077

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is one of the serious complications of diabetes mellitus, and the existing treatments cannot meet the needs of today's patients. Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application. However, the specific mechanism by which it works is still unclear. Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair (NRDP) for the treatment of DKD will provide a new way of thinking for the research and development of new drugs. AIM: To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking, and then verify the initial findings by in vitro experiments. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredient targets of NRDP. Targets for DKD were obtained based on the Genecards, OMIM, and TTD databases. The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram, and Cytoscape 3.9.0 was used to build a "drug-component-target-disease" network. The String database was used to construct protein interaction networks. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology analysis were performed based on the DAVID database. After selecting the targets and the active ingredients, Autodock software was used to perform molecular docking. In experimental validation using renal tubular epithelial cells (TCMK-1), we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability, with glucose solution used to mimic a hyperglycemic environment. Flow cytometry was used to detect the cell cycle progression and apoptosis. Western blot was used to detect the protein expression of STAT3, p-STAT3, BAX, BCL-2, Caspase9, and Caspase3. RESULTS: A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP. Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products (AGEs)-receptor for AGEs (RAGE) signaling as the core pathway. Molecular docking showed good binding between each active ingredient and its core targets. In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells, blocked cell cycle progression in the G0/G1 phase, and reduced apoptosis in a concentration-dependent manner. Based on the results of Western blot analysis, NRDP differentially downregulated p-STAT3, BAX, Caspase3, and Caspase9 protein levels (P < 0.01 or P < 0.05). In addition, BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced, while BCL-2 and STAT3 protein expression was upregulated (P < 0.01). CONCLUSION: NRDP may upregulate BCL-2 and STAT3 protein expression, and downregulate BAX, Caspase3, and Caspase9 protein expression, thus activating the AGE-RAGE signaling pathway, inhibiting the vitality of TCMK-1 cells, reducing their apoptosis. and arresting them in the G0/G1 phase to protect them from damage by high glucose.

10.
Abdom Radiol (NY) ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451265

RESUMEN

PURPOSE: To identify whether placental volume, T2 dark band volume, and cervical length measured by MRI correlate with massive hemorrhage (MH) in patients with placenta accreta spectrum (PAS) disorders. METHODS: A total of 163 pregnant women with PAS underwent preoperative MRI examination were divided into MH group and non-MH group. The placental volume, T2 dark band volume, and cervical length of PAS patients were measured and evaluated their ability to identify MH in patients with PAS. RESULTS: Patients with MH had a significantly larger placental volume, larger T2 dark band volume, and shorter cervical length than patients without MH (all P < 0.001). Multivariable logistic regression showed that placental volume (> 890 cm3), T2 dark band volume (> 35 cm3), and cervical length (< 30 mm) were significant independent risk factor in identification of MH. In all PAS patients, a positive linear correlation was found between placental volume and amount of blood loss (r = 0.527), and between T2 dark band volume and amount of blood loss (r = 0.642), and a negative linear correlation was found between cervical length and amount of blood loss (r = - 0.597). When combined with the three MRI indicators, the sensitivity and specificity in identifying cases at high risk for MH were 91.638% and 94.051%, respectively, with area under the curve (AUC) of 0.923. CONCLUSION: The placental volume, T2 dark band volume, and cervical length might be used to predict MH in patients with PAS.

11.
Mol Biomed ; 5(1): 11, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556586

RESUMEN

Gastric cancer (GC) is a common malignant tumor worldwide, especially in East Asia, with high incidence and mortality rate. Epigenetic modifications have been reported to participate in the progression of gastric cancer, among which m6A is the most abundant and important chemical modification in RNAs. Fat mass and obesity-associated protein (FTO) is the first identified RNA demethylase but little is known about its role in gastric cancer. In our study, data from TCGA and clinical samples showed that FTO was highly expressed in gastric cancer tissues. Kaplan-Meier plotter suggested that patients with the high level of FTO had a poor prognosis. In vitro and in vivo experiments confirmed the role of FTO in promoting gastric cancer cell proliferation. Mechanistically, we found that FTO bound to circFAM192A at the specific site and removed the m6A modification in circFAM192A, protecting it from degradation. CircFAM192A subsequently interacted with the leucine transporter solute carrier family 7 member 5 (SLC7A5) and enhancing its stability. As a result, an increased amount of SLC7A5 was on the membrane, which facilitated leucine uptake and activated the mTOR signaling pathway. Therefore, our study demonstrated that FTO promoted gastric cancer proliferation through the circFAM192A/SLC7A5 axis in the m6A-dependent manner. Our study shed new light on the role of FTO in gastric cancer progression.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Proliferación Celular , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Humanos , Línea Celular Tumoral , Animales , Regulación Neoplásica de la Expresión Génica , Ratones , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Transducción de Señal , Pronóstico , Femenino , Ratones Desnudos , Transportador de Aminoácidos Neutros Grandes 1
12.
J Hazard Mater ; 468: 133824, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377915

RESUMEN

The study examined the transport behavior of the 2-aryl propionic acid (2-APA) chiral pharmaceutical enantiomers by means of a laboratory-scale saturated quartz sand column experiment. Four typical of 2-APA and their enantiomers were selected for the study under different types of chiral organic acids (COAs)-mediated effects. Differences in the transport of the 2-APA enantiomeric pairs have been identified in response to various pH, types of COAs, and enantiomeric structures of COAs. Redundancy analysis identified the factors responsible for the largest differences in transport of 2-APA enantiomeric pairs, while spectroscopic characterization and density function theory (DFT) studies elucidated the underlying mechanisms contributing to the differences in transport of enantiomeric pairs. Obvious correlations among homochirality or heterochirality between COAs and 2-APA enantiomeric pairs were observed for changes in the mobility of 2-APA. The results indicate widespread COAs significantly affect the transport behavior of chiral man-made chemicals, suggesting more attention is needed to fill the gap in the perception of the transport behavior of chiral compounds.

13.
Proc Natl Acad Sci U S A ; 121(7): e2316960121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319964

RESUMEN

The Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV)-one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here, we describe a universal Ebola virus vaccine approach using a structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacunas Virales , Humanos , Animales , Ratones , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Sueros Inmunes
14.
Small ; : e2309514, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415913

RESUMEN

Sustainable, durable, and diverse photochromic smart textiles based on bacterial cellulose (BC) have emerged as attractive candidates in UV-sensing applications due to the green and easy functionalization of BC. However, existing BC-based photochromic textiles lack photochromic efficiency and combining fastness. In this study, a green strategy for in situ fermentation is developed to achieve the directional distribution of functional particles and remarkable photochromism in photochromic bacterial cellulose (PBC). The unique functional design obtained by regulating the photochromic dye distribution in 3D nanonetworks of PBCs during in situ growth affords a more uniform distribution and high fastness. Benefiting from the uniform distribution of photochromic dyes and adequate utilization of the 3D network structure, more surface area is provided to receive and utilize the photon energy from the UV rays, making the photochromic process more effective. The as-prepared PBCs exhibited rapid (within 1 min) and stable (30 cycles) discoloration and multicolor selectivity. Their simple preparation process and exceptional wearability, e.g., their flexibility, lightweight, and air permeability, make them suitable for various applications, including tunable color switching systems, photopatterning, and daily sunlight UV monitoring. This study provides empirical value for the biofabrication of photochromic textiles and wearable flexible UV sensors.

15.
Saudi Pharm J ; 32(4): 101991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38414783

RESUMEN

Nowadays, NPS abuse are continuing to expand in terms of harm and scope, due to its cheap and easy to manufacture anywhere in the world. This study reviewed articles related to seven heavily abused NPS to analyze the structure and trends of NPS abuse. A total of 2476 articles were retrieved based on the search strategy for bibliometric analysis. A significant trend of research in recent years was the increasing number of research on synthetic opioids and designer benzodiazepines, but synthetic cannabinoid and synthetic cathinone still dominate, which were mainly concerned with the development of metabolic models and determining methods as well as their abuse characteristics and reasons. However, with the introduction of class-wide ban on synthetic cannabinoid in China and a series of enhancements in other countries, the abuse of it might decrease to some extent, but more than 20 kinds of synthetic cannabinoid beyond the scope of ban in China still reminded researchers of their potential threats. As for synthetic cathinone, an important phenomenon was some of the drugs first identified during certain period might be more widely distributed in the future. Besides, several problems such as the regulation and prevention mode of emerging NPS, development of testing technologies as well as the interpretation and identification of multiple NPS combinations were also worth paying attention to. This study could help entrants better understand the structure of NPS abuse and provided direction for future research in forensic toxicology.

16.
BMC Public Health ; 24(1): 491, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365682

RESUMEN

BACKGROUND: This study examined the relationship between loneliness and bedtime procrastination among Chinese university students, the mediating effects of COVID-19 risk perception and self-regulatory fatigue, and connectedness to nature's protective role, post pandemic. METHODS: We recruited 855 students to complete the Loneliness, Perceived Risk of COVID-19 Pandemic, Self-Regulatory Fatigue, Bedtime Procrastination, and Connectedness to Nature Scales. Data for descriptive statistics, correlation analysis, and moderated chain mediation effects were analyzed using SPSS 24.0 and process 3.5 macros. RESULTS: Loneliness positively correlated with bedtime procrastination, COVID-19 risk perception mediated the impact of loneliness on bedtime procrastination, self-regulatory fatigue mediated the effect of loneliness on bedtime procrastination, and COVID-19 risk perception and self-regulatory fatigue mediated the effect between loneliness and bedtime procrastination. Furthermore, connectedness to nature mediated the impact of COVID-19 risk perception on self-regulatory fatigue. CONCLUSIONS: The results indicate the effects and potential mechanisms of loneliness on bedtime procrastination after the relaxation of the pandemic prevention and control policy in China from the perspective of self-regulatory resources and provide insights into improving university students' sleep routine and mental health post pandemic.


Asunto(s)
COVID-19 , Procrastinación , Humanos , Soledad , Pandemias , Universidades , COVID-19/epidemiología , Fatiga , Estudiantes
17.
J Virol ; 98(2): e0157123, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38206036

RESUMEN

In pandemic scenarios involving novel human pathogenic viruses, it is highly desirable that vaccines induce strong neutralizing antibodies as quickly as possible. However, current vaccine strategies require multiple immunization doses to produce high titers of neutralizing antibodies and are poorly protective after a single vaccination. We therefore wished to design a vaccine candidate that would induce increased protective immune responses following the first vaccine dose. We hypothesized that antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein could be increased by drawing upon immunity to a previous infection. We generated a fusion protein containing the influenza H1N1 PR8 virus nucleoprotein (NP) and the SARS-CoV-2 spike RBD. Mice with or without preexisting immunity to PR8 were then vaccinated with NP/RBD. We observed significantly increased SARS-CoV-2 neutralizing antibodies in mice with PR8 immunity compared to mice without preexisting PR8 immunity. Vaccination with NP/RBD protected mice from SARS-CoV-2-induced morbidity and mortality after a single dose. Additionally, we compared SARS-CoV-2 virus titers in the lungs and nasal turbinates 4 days post-challenge of mice vaccinated with NP/RBD. SARS-CoV-2 virus was detectable in the lungs and nasal turbinate of mice without preexisting PR8 immunity, while SARS-CoV-2 virus was completely undetectable in mice with preexisting PR8 immunity. We also found that CD4-positive T cells in mice with preexisting immunity to PR8 play an essential role in producing the increased antibody response against RBD. This vaccine strategy potentially can be modified to target other pathogens of concern and offers extra value in future pandemic scenarios.IMPORTANCEIncreased globalization and changes in human interactions with wild animals has increased the likelihood of the emergence of novel viruses with pandemic potential. Vaccines can be effective in preventing severe disease caused by pandemic viruses. However, it takes time to develop protective immunity via prime-boost vaccination. More effective vaccine designs should quickly induce protective immunity. We propose leveraging preexisting immunity to a different pathogen to boost protection against emerging viruses. We targeted SARS-CoV-2 as a representative pandemic virus and generated a fusion protein vaccine that combines the nucleoprotein from influenza A virus and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Our vaccine design significantly increased the production of RBD-specific antibodies in mice that had previously been exposed to influenza virus, compared to those without previous exposure. This enhanced immunity reduced SARS-CoV-2 replication in mice. Our results offer a vaccine design that could be valuable in a future pandemic setting.


Asunto(s)
Vacunas contra la COVID-19 , Vacunas contra la Influenza , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/inmunología , COVID-19/prevención & control , Subtipo H1N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Nucleoproteínas , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Vacunas contra la COVID-19/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control
18.
Nat Chem Biol ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225471

RESUMEN

A major challenge in creating universal influenza vaccines is to focus immune responses away from the immunodominant, variable head region of hemagglutinin (HA-head) and toward the evolutionarily conserved stem region (HA-stem). Here we introduce an approach to control antigen orientation via site-specific insertion of aspartate residues that facilitates antigen binding to alum. We demonstrate the generalizability of this approach with antigens from Ebola, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses and observe enhanced neutralizing antibody responses in all cases. We then reorient an H2 HA in an 'upside-down' configuration to increase the exposure and immunogenicity of HA-stem. The reoriented H2 HA (reoH2HA) on alum induced stem-directed antibodies that cross-react with both group 1 and group 2 influenza A subtypes. Electron microscopy polyclonal epitope mapping (EMPEM) revealed that reoH2HA (group 1) elicits cross-reactive antibodies targeting group 2 HA-stems. Our results highlight antigen reorientation as a generalizable approach for designing epitope-focused vaccines.

19.
Adv Mater ; 36(15): e2307682, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38238890

RESUMEN

Freestanding perovskite oxide membranes have drawn great attention recently since they offer exceptional structural tunability and stacking ability, providing new opportunities in fundamental research and potential device applications in silicon-based semiconductor technology. Among different types of sacrificial layers, the (Ca, Sr, Ba)3Al2O6 compounds are most widely used since they can be dissolved in water and prepare high-quality perovskite oxide membranes with clean and sharp surfaces and interfaces; However, the typical transfer process takes a long time (up to hours) in obtaining millimeter-size freestanding membranes, let alone realize wafer-scale samples with high yield. Here, a new member of the SrO-Al2O3 family, Sr4Al2O7 is introduced, and its high dissolution rate, ≈10 times higher than that of Sr3Al2O6 is demonstrated. The high-dissolution-rate of Sr4Al2O7 is most likely related to the more discrete Al-O networks and higher concentration of water-soluble Sr-O species in this compound. This work significantly facilitates the preparation of freestanding membranes and sheds light on the integration of multifunctional perovskite oxides in practical electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...