Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Rep ; 20(6): 96, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765860

RESUMEN

Colorectal cancer (CRC), one of the most prevalent types of cancer, is accompanied by a notably high incidence of thrombotic complications. The present study aimed to elucidate the association between KRAS mutations and hypercoagulability in operable CRC. The prognostic value of preoperative D-dimer levels was also investigated, thus providing novel insights into the development of therapeutic strategies to enhance patient survival and diminish morbidity. Therefore, a prospective analysis of 333 CRC cases post-surgery at Yan'an Hospital Affiliated to Kunming Medical University, between May 2019 and October 2022 was performed. Data on demographics, tumor characteristics and D-dimer levels were compiled from the electronic health records. Venous thromboembolism (VTE) was diagnosed by doppler or computed tomography angiography, with D-dimer thresholds set at 550 and 1,650 µg/l. KRAS mutations at codons 12 and 13 were assessed in a subset of 56 cases. Subsequently, the factors affecting the hypercoagulable state in these patients were prospectively analyzed, focusing on the pivotal role of KRAS. The results showed that KRAS mutations were associated with elevated preoperative D-dimer levels, with 1,076 µg/l compared with 485 µg/l in the wild-type cohort, indicative of a hypercoagulable state. Increased D-dimer levels were also associated with vascular invasion, distant metastases and a heightened risk of postoperative VTE. Furthermore, multivariate analyses identified KRAS mutations, distant metastases and vascular invasion as independent predictors of elevated D-dimer levels, with relative risk values of 2.912, 1.884 and 1.525, respectively. Conversely, sex, age, tumor location, differentiation grade, Ki67 index and tumor stage could not significantly affect D-dimer levels, thus indicating a complex interplay between tumor genetics and coagulation dysfunction in CRC. The current study suggested that the KRAS mutation status, distant metastasis and vascular invasion could be considered as independent risk factors of blood hypercoagulability in patients with CRC, potentially serving as prognostic factors for VTE risk.

2.
Ann Med Surg (Lond) ; 86(2): 850-855, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333285

RESUMEN

Background: The KRAS genotype status is strongly associated with a prothrombotic state in colorectal cancer, and hypercoagulability and cancer-related thrombosis are among the significant events leading to poor prognosis. However, this correlation has not been confirmed at the cellular level. This study aimed to assess the maximum platelet aggregation rate and thrombin expression induced by colorectal cancer cells under different KRAS genotypes. Materials and methods: Platelet aggregation rate assay and western blotting analysis were used to detect platelet aggregation and thrombin expression induced by four colorectal cancer cells with different KRAS genotypes, including RKO, HCT116, SW480, and SW620. FVIIa/tissue factor and thrombin inhibitors were added to explore changes in platelet aggregation rates induced by colorectal cancer cells and the association between KRAS genotype status and hypercoagulable state. Results: KRAS-mutant cells were more likely to increase maximal platelet aggregation, with RKO, HCT116, SW480, and SW620 inducing 34.7%, 55.4%, 44.4%, and 63.8% of platelet aggregation, respectively. The maximum platelet aggregation rate was higher in the metastatic rectal cancer tumour strain SW620 than in the primary rectal cancer strain SW480. RKO cells had lower thrombin expression than the other three cells. Furthermore, the addition of thrombin inhibitors caused a more significant decrease in the platelet aggregation rate in KRAS-mutant cell lines compared to KRAS wild-type cell lines. Conclusion: Compared to KRAS wild-type colorectal cancer cells, KRAS-mutant colorectal cancer cell lines were more likely to be hypercoagulable through the upregulation of thrombin expression, which was mainly achieved through the TF-thrombin pathway.

3.
J Control Release ; 363: 641-656, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820984

RESUMEN

Optic neuropathy is the leading cause of irreversible blindness and is characterized by progressive degeneration of retinal ganglion cells (RGCs). Several studies have demonstrated that transplantation of Schwann cells (SCs) is a promising candidate therapy for optic neuropathy and that intravitreally transplanted cells exert their effect via paracrine actions. Extracellular vesicle (EV)-based therapies are increasingly recognized as a potential strategy for cell replacement therapy. In this study, we aimed to investigate the neuroprotective and regenerative effects of SC-EVs following optic nerve injury. We found that SC-EVs were internalized by RGCs in vitro and in vivo without any transfection reagents. Intriguingly, SC-EVs significantly enhanced the survival and axonal growth of primary RGCs in a coculture system. In a rat optic nerve crush model, SC-EVs mitigated RGC degeneration, prevented RGC loss, and preserved the thickness of the ganglion cell complex, as demonstrated by the statistically significant improvement in RGC counts and thickness measurements. Mechanistically, SC-EVs activated the cAMP-response element binding protein (CREB) signaling pathway and regulated reactive gliosis in ONC rats, which is crucial for RGC protection and axonal regeneration. These findings provide novel insights into the neuroprotective and regenerative properties of SC-EVs, suggesting their potential as a cell-free therapeutic strategy and natural biomaterials for neurodegenerative diseases of the central nervous system.


Asunto(s)
Axones , Traumatismos del Nervio Óptico , Ratas , Animales , Axones/metabolismo , Células Ganglionares de la Retina/metabolismo , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Células de Schwann/metabolismo , Modelos Animales de Enfermedad
4.
Cancer Med ; 12(2): 2075-2088, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35789544

RESUMEN

BACKGROUND: Microsatellite instability-high (MSI-H) subgroup of gastric cancer (GC) is characterized by a high tumor mutational burden, increased lymphocytic infiltration, and enhanced inflammatory cytokines. GC patients with MSI-H status have a good response to immune checkpoint blockade management. However, heterogeneity within the subtype and the underlying mechanisms of shaping tumor microenvironments remain poorly understood. METHODS: RNA expression levels and clinical parameters of GC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The data were analyzed using single-sample Gene Set Enrichment Analysis (ssGSEA), univariate Cox regression, multivariate Cox regression, and Least Absolute Shrinkage Selection Operator (LASSO) regression. In addition, multiplex immunohistochemistry (mIHC) was used in our clinical cohort for the tumor microenvironment study. RESULTS: By ssGSEA and survival analysis, the EMT signaling pathway was identified as a representative pathway, which can stratify the patients with MSI-H GC with significant survival predictive power. Then, a novel representative EMT-related five-gene signature (namely CALU, PCOLCE2, PLOD2, SGCD, and THBS2) was established from EMT signaling gene set, which sensitivity and specificity were further validated in the independent GEO database (GSE62254) cohort for disease outcome prediction. Based on public single-cell data and in situ immunohistochemistry, we found that most of these five genes were abundantly expressed in cancer-associated fibroblasts. Furthermore, patients with high or low risk divided by this five-gene signature exhibited a strong correlation of the distinct patterns of tumor immune microenvironment. By mIHC staining of sections from 30 patients with MSI-H status, we showed that the patients with better prognoses had the increased infiltration of CD8+ cells in the primary tumoral tissue. CONCLUSION: Our study developed a simple five-gene signature for stratifying MSI-H GC patients with survival predictive power.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Inestabilidad de Microsatélites , Genes Reguladores , Linfocitos T CD8-positivos , Pronóstico , Microambiente Tumoral/genética
5.
Cell Death Dis ; 13(7): 577, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778385

RESUMEN

The activity of integrin-linked kinase (ILK) in cancerous cells is often oncogenic and associated with malignant properties, such as uncontrolled cell cycle progression and evasion from senescence. However, the role of ILK in cellular senescence in gastric cancer (GC) has not been previously examined. We generated single-cell clones of ILK knock-out using CRISPR-Cas9 in human GC lines with mesenchymal or epithelial histology. Cells with no residual ILK expression exhibited strong cellular senescence with diminished clathrin-mediated endocytosis, Surprisingly, ILK loss-induced cellular senescence appeared to be independent of its function in integrin signaling. The low dose of CPD22, a small molecule inhibitor of ILK activity-induced senescence in three GC cell lines with different histologies. Furthermore, senescent cells with ILK depletion transfected with N-terminal truncated ILK mutant remaining catalytic domains displayed the reduction of senescent phenotypes. RNA sequencing and cytokine array results revealed the enrichment of multiple pro-inflammatory signaling pathways in GC lines in the absence of ILK. Our study identified the important role and the potential mechanism of ILK in the cellular senescence of cancerous epithelial cells. The inhibition of ILK activity using small molecule compounds could have a pro-senescent effect as a therapeutic option for GC.


Asunto(s)
Neoplasias Gástricas , Senescencia Celular , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Neoplasias Gástricas/genética
6.
Oncogene ; 41(1): 26-36, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667277

RESUMEN

The EMT (epithelial-to-mesenchymal-transition) subtype of gastric cancer (GC) is associated with poor treatment responses and unfavorable clinical outcomes. Despite the broad physiological roles of the micro-RNA (miR)-200 family, they largely serve to maintain the overall epithelial phenotype. However, during late-stage gastric tumorigenesis, members of the miR-200 family are markedly suppressed, resulting in the transition to the mesenchymal state and the acquisition of invasive properties. As such, the miR-200 family represents a robust molecular marker of EMT, and subsequently, disease severity and prognosis. Most reports have studied the effect of single miR-200 family member knockdown. Here, we employ a multiplex CRISPR/Cas9 system to generate a complete miR-200 family knockout (FKO) to investigate their collective and summative role in regulating key cellular processes during GC pathogenesis. Genetic deletion of all miR-200s in the human GC cell lines induced potent morphological alterations, G1/S cell cycle arrest, increased senescence-associated ß-galactosidase (SA-ß-Gal) activity, and aberrant metabolism, collectively resembling the senescent phenotype. Coupling RNA-seq data with publicly available datasets, we revealed a clear separation of senescent and non-senescent states amongst FKO cells and control cells, respectively. Further analysis identified key senescence-associated secretory phenotype (SASP) components in FKO cells and a positive feedback loop for maintenance of the senescent state controlled by activation of TGF-ß and TNF-α pathways. Finally, we showed that miR-200 FKO associated senescence in cancer epithelial cells significantly recruited stromal cells in the tumor microenvironment. Our work has identified a new role of miR-200 family members which function as an integrated unit serving to link senescence with EMT, two major conserved biological processes.


Asunto(s)
Senescencia Celular/inmunología , Transición Epitelial-Mesenquimal/inmunología , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/metabolismo , Neoplasias Gástricas/genética , Línea Celular Tumoral , Proliferación Celular , Humanos , Pronóstico , Neoplasias Gástricas/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...