Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sheng Li Xue Bao ; 72(3): 347-360, 2020 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-32572432

RESUMEN

Interactions among the nervous, the endocrine and the immune systems enable the gut to respond to the dietary products, pathogens and microbiota, which maintains the homeostasis of the body. However, dysbiosis may induce or aggravate the gastrointestinal (GI) and extra-GI diseases through changing the activities of enteric nervous system (ENS), enteroendocrine cells and enteric immune cells. Here we review recent advances in the understandings on how intestinal flora may impact the enteric neuro-endocrine-immune system in the gut, thereby contributing to the regulation of pathophysiological processes.


Asunto(s)
Sistema Nervioso Entérico , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Humanos , Sistema Inmunológico
2.
Biotechnol Biofuels ; 12: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30622649

RESUMEN

BACKGROUND: Raw-starch-digesting glucoamylases (RSDGs) from filamentous fungi have great commercial values in starch processing; however, the regulatory mechanisms associated with their production in filamentous fungi remain unknown. Penicillium oxalicum HP7-1 isolated by our laboratory secretes RSDG with suitable properties but at low production levels. Here, we screened and identified novel regulators of RSDG gene expression in P. oxalicum through transcriptional profiling and genetic analyses. RESULTS: Penicillium oxalicum HP7-1 transcriptomes in the presence of glucose and starch, respectively, used as the sole carbon source were comparatively analyzed, resulting in screening of 23 candidate genes regulating the expression of RSDG genes. Following deletion of 15 of the candidate genes in the parental P. oxalicum strain ∆PoxKu70, enzymatic assays revealed five mutants exhibiting significant reduction in the production of raw-starch-digesting enzymes (RSDEs). The deleted genes (POX01907, POX03446, POX06509, POX07078, and POX09752), were the first report to regulate RSDE production of P. oxalicum. Further analysis revealed that ∆POX01907 lost the most RSDE production (83.4%), and that POX01907 regulated the expression of major amylase genes, including the RSDG gene POX01356/PoxGA15A, a glucoamylase gene POX02412, and the α-amylase gene POX09352/Amy13A, during the late-stage growth of P. oxalicum. CONCLUSION: Our results revealed a novel essential regulatory gene POX01907 encoding a transcription factor in controlling the production of RSDE, regulating the expression of an important RSDG gene POX01356/PoxGA15A, in P. oxalicum. These results provide insight into the regulatory mechanism of fungal amylolytic enzyme production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...