Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
1.
Cancer Immunol Immunother ; 73(7): 129, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744688

RESUMEN

Emerging evidence suggests that tumor-specific neoantigens are ideal targets for cancer immunotherapy. However, how to predict tumor neoantigens based on translatome data remains obscure. Through the extraction of ribosome-nascent chain complexes (RNCs) from LLC cells, followed by RNC-mRNA extraction, RNC-mRNA sequencing, and comprehensive bioinformatic analysis, we successfully identified proteins undergoing translatome and exhibiting mutations in the cells. Subsequently, novel antigens identification was analyzed by the interaction between their high affinity and the Major Histocompatibility Complex (MHC). Neoantigens immunogenicity was analyzed by enzyme-linked immunospot assay (ELISpot). Finally, in vivo experiments in mice were conducted to evaluate the antitumor effects of translatome-derived neoantigen peptides on lung cancer. The results showed that ten neoantigen peptides were identified and synthesized by translatome data from LLC cells; 8 out of the 10 neoantigens had strong immunogenicity. The neoantigen peptide vaccine group exhibited significant tumor growth inhibition effect. In conclusion, neoantigen peptide vaccine derived from the translatome of lung cancer exhibited significant tumor growth inhibition effect.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Neoplasias Pulmonares , Vacunas de Subunidad , Animales , Antígenos de Neoplasias/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Ratones , Vacunas contra el Cáncer/inmunología , Vacunas de Subunidad/inmunología , Humanos , Ratones Endogámicos C57BL , Femenino , Inmunoterapia/métodos , Línea Celular Tumoral , Vacunas de Subunidades Proteicas
2.
Acta Biomater ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692469

RESUMEN

Bacterial infection poses a significant impediment in wound healing, necessitating the development of dressings with intrinsic antimicrobial properties. In this study, a multilayered wound dressing (STPU@MTAI2/AM1) was reported, comprising a surface-superhydrophobic treated polyurethane (STPU) sponge scaffold coupled with an antimicrobial hydrogel. A superhydrophobic protective outer layer was established on the hydrophilic PU sponge through the application of fluorinated zinc oxide nanoparticles (F-ZnO NPs), thereby resistance to environmental contamination and bacterial invasion. The adhesive and antimicrobial inner layer was an attached hydrogel (MTAI2/AM1) synthesized through the copolymerization of N-[2-(methacryloyloxy)ethyl]-N, N, N-trimethylammonium iodide and acrylamide, exhibits potent adherence to dermal surfaces and broad-spectrum antimicrobial actions against resilient bacterial strains and biofilm formation. STPU@MTAI2/AM1 maintained breathability and flexibility, ensuring comfort and conformity to the wound site. Biocompatibility of the multilayered dressing was demonstrated through hemocompatibility and cytocompatibility studies. The multilayered wound dressing has demonstrated the ability to promote wound healing when addressing MRSA-infected wounds. The hydrogel layer demonstrates no secondary damage when peeled off compared to commercial polyurethane sponge dressing. The STPU@MTAI2/AM1-treated wounds were nearly completely healed by day 14, with an average wound area of 12.2 ± 4.3 %, significantly lower than other groups. Furthermore, the expression of CD31 was significantly higher in the STPU@MTAI2/AM1 group compared to other groups, promoting angiogenesis in the wound and thereby contributing to wound healing. Therefore, the prepared multilayered wound dressing presents a promising therapeutic candidate for the management of infected wounds. STATEMENT OF SIGNIFICANCE: Healing of chronic wounds requires avoidance of biofouling and bacterial infection. However developing a wound dressing which is both anti-biofouling and antimicrobial is a challenge. A multilayered wound dressing with multifunction was developed. Its outer layer was designed to be superhydrophobic and thus anti-biofouling, and its inner layer was broad-spectrum antimicrobial and could inhibit biofilm formation. The multilayered wound dressing with adhesive property could easily be removed from the wound surface preventing the cause of secondary damage. The multilayered wound dressing has demonstrated good abilities to promote MRSA-infected wound healing and presents a viable treatment for MRSA-infected wound.

3.
Heliyon ; 10(9): e30045, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694097

RESUMEN

Health insurance fraud is becoming more common and impacting the fairness and sustainability of the health insurance system. Traditional health insurance fraud detection primarily relies on recognizing established data patterns. However, with the ever-expanding and complex nature of health insurance data, it is difficult for these traditional methods to effectively capture evolving fraudulent activity and tactics and keep pace with the constant improvements and innovations of fraudsters. As a result, there is an urgent need for more accurate and flexible analytics to detect potential fraud. To address this, the Multi-channel Heterogeneous Graph Structured Learning-based health insurance fraud detection method (MHGSL) was proposed. MHGSL constructs a graph of health insurance data from various entities, such as patients, departments, and medicines, and employs graph structure learning to extract topological structure, features, and semantic information to construct multiple graphs that reflect the diversity and complexity of the data. We utilize deep learning methods such as heterogeneous graph neural networks and graph convolutional neural networks to combine multi-channel information transfer and feature fusion to detect anomalies in health insurance data. The results of extensive experiments on real health insurance data demonstrate that MHGSL achieves a high level of accuracy in detecting potential fraud, which is better than existing methods, and is able to quickly and accurately identify patients with fraudulent behaviors to avoid loss of health insurance funds. Experiments have shown that multi-channel heterogeneous graph structure learning in MHGSL can be very helpful for health insurance fraud detection. It provides a promising solution for detecting health insurance fraud and improving the fairness and sustainability of the health insurance system. Subsequent research on fraud detection methods can consider semantic information between patients and different types of entities.

4.
Sci Total Environ ; 929: 172576, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649055

RESUMEN

As sustainable materials, cellulose-based materials have attracted significant attention in the field of environmental protection, resulting in the publication of numerous academic papers. However, there is a scarcity of literature that involving scientometric analysis within this specific domain. This review aims to address this gap and highlight recent research in this field by utilizing scientometric analysis and a historical review. As a result, 21 highly cited articles and 10 mostly productive journals were selected out. The scientometric analysis reveals that recent studies were objectively clustered into five interconnected main themes: extraction of cellulose from raw materials and its degradation, adsorption of pollutants using cellulose-based materials, cellulose-acetate-based membrane materials, nanocellulose-based materials, and other cellulose-based materials such as carboxymethyl cellulose and bacterial cellulose for environmental protection. Analyzing the distribution of author keywords and thoroughly examining relevant literature, the research focuses within these five themes were summarized. In the future, the development of eco-friendly and cost-effective methods for extracting and preparing cellulose and its derivatives, particularly nanocellulose-based materials, remains an enduring pursuit. Additionally, machine learning techniques holds promise for the advancement and application of cellulose-based materials. Furthermore, there is potential to expand the research and application scope of cellulose-based materials for environmental protection.

5.
Biol Chem ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38651266

RESUMEN

Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.

6.
Hellenic J Cardiol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636776

RESUMEN

BACKGROUND: To develop a novel complexity evaluation system for mitral valve repair based on preoperative echocardiographic data and multiple machine learning algorithms. METHODS: From March 2021 to March 2023, 231 consecutive patients underwent mitral valve repair. Clinical and echocardiographic data were included in the analysis. End points included immediate mitral valve repair failure (mitral replacement secondary to mitral repair failure) and recurrence regurgitation (moderate or greater mitral regurgitation before discharge). Various machine learning algorithms were used to establish the complexity evaluation system. RESULTS: A total of 231 patients were included in this study, the median ejection fraction was 66 (63,70) %, and 159 (68.8%) patients were men. Mitral repair was successful in 90.9% (210 of 231) of patients. Linear Support Vector Classification (LSVC) model has the best prediction results in both training and test cohorts and the variables of age, A2 lesions, leaflet height, mitral regurgitation grades et al. were risk factors for failure of mitral valve repair. CONCLUSION: LSVC prediction model may allow evaluation of the complexity of mitral valve repair. Age, A2 lesions, leaflet height, and mitral regurgitation grades et al. may be associated with mitral repair failure.

7.
J Am Chem Soc ; 146(15): 10776-10784, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38578219

RESUMEN

Seeking noble-metal-free catalysts for efficient synthesis of aryl nitriles under mild conditions poses a significant challenge due to the use of hypertoxic cyanides or high-pressure/temperature NH3/O2 in conventional synthesis processes. Herein, we developed a novel framework 1 assembled by [Ni72] nanocages with excellent solvents/pH stability. To investigate the structure-activity relationship of catalytic performance, several isostructural MOFs with different molar ratios of Ni/Cu by doping Cu2+ into framework 1 (Ni0.59Cu0.41 (2), Ni0.81Cu0.19 (3), Ni0.88Cu0.12 (4), and Ni0.92Cu0.08 (5)) were prepared. Catalytic studies revealed that catalyst 3 exhibited remarkable performance in the synthesis of aryl nitriles, utilizing a formamide alternative to hypertoxic NaCN/KCN. Notably, catalyst 3 achieved an excellent TOF value of 9.8 h-1. Furthermore, catalyst 3 demonstrated its applicability in a gram-scale experiment and maintained its catalytic performance even after six recycling cycles, owing to its high stability resulting from significant electrostatic and orbital interactions between the Ni center and ligands as well as a large SOMO-LUMO energy gap supported by DFT calculations. Control experiments and DFT calculations further revealed that the excellent catalytic performance of catalyst 3 originated from the synergistic effect of Ni/Cu. Importantly, this work not only provides a highly feasible method to construct highly stable MOFs containing multinuclear nanocages with exceptional catalytic performance but also represents the first example of a heterogeneous catalyst for the synthesis of aryl nitriles using formamide as the cyanide source.

8.
Opt Express ; 32(6): 9699-9709, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571198

RESUMEN

In order to enhance the performance of a continuous-wave photocathode electron gun at Peking University, and to achieve electron beams with higher current and brightness, a multifunctional drive laser system named PULSE (Peking University drive Laser System for high-brightness Electron source) has been developed. This innovative system is capable of delivering an average output power of 120 W infrared laser pulse at 81.25 MHz, as well as approximately 13.8 W of green power with reliable stability. The utilization of two stages of photonic crystal fibers plays a crucial role in achieving this output. Additionally, the incorporation of two acousto-optic modulators enables the selection of macro-pulses with varying repetition frequencies and duty cycles, which is essential for effective electron beam diagnosis. Furthermore, the system employs a series of birefringent crystals for temporal pulse shaping, allowing for stacking Gaussian pulses into multiple types of distribution. Overall, the optical schematic and operating performance of PULSE are detailed in this paper.

9.
Sci Rep ; 14(1): 9414, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658733

RESUMEN

The h-BN/diamond mix-dimensional heterostructure has broad application prospects in the fields of optoelectronic devices and power electronic devices. In this paper, the electronic properties and band offsets of hexagonal boron nitride (h-BN)/(H, O, F, OH)-diamond (111) heterostructures were studied by first-principles calculations under biaxial strain. The results show that different terminals could significantly affect the interface binding energy and charge transfer of h-BN/diamond heterostructure. All heterostructures exhibited semiconductor properties. The h-BN/(H, F)-diamond systems were indirect bandgap, while h-BN/(O, OH)-diamond systems were direct bandgap. In addition, the four systems all formed type-II heterostructures, among which h-BN/H-diamond had the largest band offset, indicating that the system was more conducive to the separation of electrons and holes. Under biaxial strain the bandgap values of the h-BN/H-diamond system decreased, and the band type occurred direct-indirect transition. The bandgap of h-BN/(O, F, OH)-diamond system increased linearly in whole range, and the band type only transformed under large strain. On the other hand, biaxial strain could significantly change the band offset of h-BN/diamond heterostructure and promote the application of this heterostructure in different fields. Our work provides theoretical guidance for the regulation of the electrical properties of h-BN/diamond heterostructures by biaxial strain.

10.
Environ Toxicol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598732

RESUMEN

Mono-(2-ethylhexyl) phthalate (MEHP) can accumulate in the liver and then lead to hepatic steatosis, while the underlying mechanism remains unclear. Inflammation plays an important role in the disorder of hepatic lipid metabolism. This study aims to clarify the role of the inflammatory response mediated by formyl peptide receptor 2 (FPR2) in steatosis of L02 cells exposed to MEHP. L02 cells were exposed to MEHP of different concentrations and different time. A steatosis model of L02 cells was induced with oleic acid and the cells were exposed to MEHP simultaneously. In addition, L02 cells were incubated with FPR2 antagonist and then exposed to MEHP. Lipid accumulation was determined by oil red O staining and extraction assay. The indicators related to lipid metabolism and inflammatory response were measured with appropriate kits. The relative expression levels of FPR2 and its ligand were determined by Western blot, and the interaction of them was detected by co-immunoprecipitation. As a result, MEHP exposure could promote the occurrence and progression of steatosis and the secretion of chemokines and inflammatory factors in L02 cells. MEHP could also affect the expression and activation of FPR2 and the secretion of FPR2 ligands. In addition, the promotion effect of MEHP on the secretion of total cholesterol and interleukin 1ß in L02 cells could be significantly inhibited by the FPR2 antagonist. We concluded that FPR2 might affect the promotion effect of MEHP on steatosis of L02 cells by mediating inflammatory response.

11.
J Ethnopharmacol ; 329: 118127, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583728

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY: We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS: The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1ß, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS: Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1ß were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION: SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.

12.
J Med Chem ; 67(9): 7301-7311, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38635879

RESUMEN

Although the selective and effective clearance of senescent cancer cells can improve cancer treatment, their development is confronted by many challenges. As part of efforts designed to overcome these problems, prodrugs, whose design is based on senescence-associated ß-galactosidase (SA-ß-gal), have been developed to selectively eliminate senescent cells. However, chemotherapies relying on targeted molecular inhibitors as senolytic drugs can induce drug resistance. In the current investigation, we devised a new strategy for selective degradation of target proteins in senescent cancer cells that utilizes a prodrug composed of the SA-ß-gal substrate galactose (galacto) and the proteolysis-targeting chimeras (PROTACs) as senolytic agents. Prodrugs Gal-ARV-771 and Gal-MS99 were found to display senolytic indexes higher than those of ARV-771 and MS99. Significantly, results of in vivo studies utilizing a human lung A549 xenograft mouse model demonstrated that concomitant treatment with etoposide and Gal-ARV-771 leads to a significant inhibition of tumor growth without eliciting significant toxicity.


Asunto(s)
Senescencia Celular , Galactosa , Profármacos , Proteolisis , Humanos , Animales , Senescencia Celular/efectos de los fármacos , Galactosa/química , Galactosa/farmacología , Profármacos/farmacología , Profármacos/química , Profármacos/uso terapéutico , Ratones , Proteolisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Galactosidasa/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células A549 , Etopósido/farmacología , Senoterapéuticos/farmacología , Senoterapéuticos/química , Quimera Dirigida a la Proteólisis
13.
Int Immunopharmacol ; 132: 111894, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38569426

RESUMEN

AIMS: To investigate the immunology shared mechanisms underlying chronic obstructive pulmonary disease (COPD) and type 2 diabetes mellitus (T2DM) and examine the impact of anti-diabetic drugs on acute exacerbation of COPD (AECOPD). METHODS: We analyzed GSE76925, GSE76894, GSE37768, and GSE25724 to identify differentially expressed genes. Hub-genes were identified through protein-protein interaction network analysis and evaluated by the receiver operating characteristic curve. CXCL12 emerged as a robust biomarker, and its correlation with lung function and CD8+ T cells were further quantified and validated. The activated signaling pathways were inferred through Gene set enrichment analysis (GSEA). The retrospective clinical analysis was executed to identify the influence of dipeptidyl peptidase-4 inhibitors (DPP-4i) on CXCL12 and evaluate the drug's efficacy in AECOPD. RESULTS: The significant up-regulation of CXCL12 expression in patients with two diseases were revealed. CXCL12 exhibited a negative correlation with pulmonary function (r = -0.551, p < 0.05). Consistent with analysis in GSE76925 and GSE76894, the positive correlation between the proportion of CD8+ T cells was demonstrated(r=0.469, p<0.05). GSEA identified "cytokines interaction" as an activated signaling pathway, and the clinical study revealed the correlation between CXCL12 and IL-6 (r=0.668, p<0.05). In patients with COPD and T2DM, DDP-4i treatment exhibited significantly higher serum CXCL12, compared to GLP-1RA. Analysis of 187 COPD patients with T2DM indicated that the DPP-4i group had a higher frequency of AECOPD compared to the GLP-1RA group (OR 1.287, 95%CI [1.018-2.136]). CONCLUSIONS: CXCL12 may represent a therapeutic target for COPD and T2DM. GLP-1RA treatment may be associated with lower CXCL12 levels and a lower risk of AECOPD compared to DPP-4i treatment. CLINICAL TRIAL REGISTRATION: China Clinical Trial Registration Center(ChiCTR2200055611).


Asunto(s)
Quimiocina CXCL12 , Biología Computacional , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Masculino , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Femenino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Progresión de la Enfermedad , Mapas de Interacción de Proteínas
14.
Food Chem ; 448: 139030, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531301

RESUMEN

This study presents a novel approach using polyol-based proliposome to produce marine phospholipids nanoliposomes. Proliposomes were formulated by blending glycerol with phospholipids across varying mass ratios (2:1 to 1:10) at room temperature. Analysis employing polarized light microscopy, FTIR, and DSC revealed that glycerol disrupted the stacked acyl groups within phospholipids, lowering the phase transition temperature (Tm). Krill oil phospholipids (KOP) proliposomes exhibited superior performance in nanoliposomes formation, with a mean diameter of 125.60 ± 3.97 nm, attributed to the decreased Tm (-7.64 and 7.00 °C) compared to soybean phospholipids, along with a correspondingly higher absolute zeta potential (-39.77 ± 1.18 mV). The resulting KOP proliposomes demonstrated liposomes formation stability over six months and under various environmental stresses (dilution, thermal, ionic strength, pH), coupled with in vitro absorption exceeding 90 %. This investigation elucidates the mechanism behind glycerol-formulated proliposomes and proposes innovative strategies for scalable, solvent-free nanoliposome production with implications for functional foods and pharmaceutical applications.


Asunto(s)
Glicerol , Liposomas , Nanopartículas , Fosfolípidos , Liposomas/química , Glicerol/química , Fosfolípidos/química , Animales , Nanopartículas/química , Tamaño de la Partícula , Euphausiacea/química
15.
Appl Environ Microbiol ; 90(4): e0174323, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38470180

RESUMEN

Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.


Asunto(s)
Fenoles , Floroglucinol/análogos & derivados , Pseudomonas fluorescens , Pirroles , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas/metabolismo , Antibacterianos/farmacología , Pseudomonas fluorescens/genética
16.
J Thorac Dis ; 16(2): 948-959, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38505009

RESUMEN

Background: Malignant esophageal stent esophagorespiratory fistula (ERF) is an abnormal communication between esophagus and airway among advanced tumor patients with indwelling esophageal stent, which is devastating and life-threatening. This study aims to provide a new feasible treatment scheme for malignant esophageal stent ERF and report its potential advantage compared with double stenting, which was recommended by European Society of Gastrointestinal Endoscopy Guideline. Methods: We retrospectively analyzed the medical data of malignant esophageal stent ERF patients between January 2018 to May 2023 at the First Affiliated Hospital of Guangzhou Medical University and divided them into two groups. Group 1 consisted of patients treated with rigid bronchoscopy to remove the esophageal stent and implant Y silicone trachea stent, while group 2 consisted of patients treated with additional airway stenting without removing the esophageal stent. Demographic parameters, disease diagnoses and treatment, radiological findings before and after the intervention, and complications caused by the stents were obtained and analyzed with chi-squared, Mann-Whitney U, independent-samples t-tests, Kaplan-Meier methods, and log-rank test. Results: Ten patients (seven patients in group 1 and three in group 2) were included. No procedure complications occurred in both groups. The mean Karnofsky Performance Score after the procedure significantly improved compared to the pre-procedure (57.14 vs. 77.14, P=0.001) in group 1, while decreased in group 2 (50 vs. 40, P=0.026). The control of pneumonia in group 1 patients is better than that in group 2. There was significant improvement in the degree of dysphagia after the procedure (3.86 vs. 2.43, P=0.002) in group 1, while no improvement was found in group 2 (4.00 vs. 3.33, P=0.423). The mean survival of group 1 was significantly longer group 2 (381.00 vs. 80.33 days, P<0.001, log-rank test). No patient needed stent repositioning due to migration in both groups. Cause of death in the group 1 included disease progression, novel coronavirus pneumonia, massive hemoptysis, and respiratory insufficiency, while group 2 included severe pneumonia and disease progression. No death was directly attributed to the procedure in both groups. Conclusions: Removing the esophageal stent and implanting Y silicone trachea stent through a rigid bronchoscopy is a safe and feasible treatment for malignant esophageal stent ERF. This procedure can effectively seal the fistula, prevent from recurrent aspiration pneumonia, improve the quality of life, and prolong the survival time.

17.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489483

RESUMEN

Caspase (CASP) is a family of proteases involved in cleavage and activation of gasdermin, the executor of pyroptosis. In humans, CASP3 and CASP7 recognize the same consensus motif DxxD, which is present in gasdermin E (GSDME). However, human GSDME is cleaved by CASP3 but not by CASP7. The underlying mechanism of this observation is unclear. In this study, we identified a pyroptotic pufferfish GSDME that was cleaved by both pufferfish CASP3/7 and human CASP3/7. Domain swapping between pufferfish and human CASP and GSDME showed that the GSDME C-terminus and the CASP7 p10 subunit determined the cleavability of GSDME by CASP7. p10 contains a key residue that governs CASP7 substrate discrimination. This key residue is highly conserved in vertebrate CASP3 and in most vertebrate (except mammalian) CASP7. In mammals, the key residue is conserved in non-primates (e.g., mouse) but not in primates. However, mouse CASP7 cleaved human GSDME but not mouse GSDME. These findings revealed the molecular mechanism of CASP7 substrate discrimination and the divergence of CASP3/7-mediated GSDME activation in vertebrate. These results also suggested that mutation-mediated functional alteration of CASP probably enabled the divergence and specialization of different CASP members in the regulation of complex cellular activities in mammals.


Cell death is essential for an organism to develop and survive as it plays key roles in processes such as embryo development and tissue regeneration. Cell death is also an important form of defence during an infection. A form of programmed cell death known as pyroptosis can be induced in infected cells, which helps to kill the infectious agent as well as alert the immune system to the infection. Pyroptosis is driven by Gasdermin E, a protein made up of two domains. At one end of the protein, the 'N-terminal' domain punctures holes in cell membranes, which can lead to cell death. At the other end, the 'C-terminal' domain inhibits the activity of the N-terminal domain. A family of proteins called caspases activate Gasdermin E by cleaving it, which releases the N-terminal domain from the inhibitory C-terminal domain. In humans, two caspases known as CASP3 and CASP7 recognize a specific sequence of amino acids ­ the building blocks of proteins ­ in Gasdermin E. However, only CASP3 is able to cleave the protein. After discovering that, unlike in humans, pufferfish Gasdermin E can be cleaved by both CASP3 and CASP7, Xu et al. wanted to investigate the underlying mechanisms behind this difference. Swapping the domains of human and pufferfish Gasdermin E and creating different versions of CASP7 revealed that the C-terminal domain of Gasdermin E and a single amino acid in CASP7 determine whether cleavage is possible. Interestingly, the key amino acid sequence required for cleavage by CASP7 is present in most vertebrate CASP3 and CASP7 proteins. However, it is absent in most mammalian CASP7. The findings of Xu et al. suggest that the different activity of human CASP7 and CASP3 is driven by a single amino acid mutation. This change likely played an important role in the process of different CASP proteins evolving to regulate different cellular activities in mammalian cells. This knowledge will be useful for future studies on the evolution and specialization of other closely related proteins.


Asunto(s)
Gasderminas , Piroptosis , Humanos , Animales , Ratones , Caspasa 3/metabolismo , Piroptosis/genética , Caspasas/genética , Caspasas/metabolismo , Mamíferos/metabolismo
18.
Urol Int ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38432212

RESUMEN

INTRODUCTION: Previous studies showed exercise have efficacies for androgen deprivation therapy (ADT) adverse effects. To compare the efficacies of different exercises on ADT adverse effects, we conducted the network meta-analysis (NMA). METHODS: Literature retrieval was performed in PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL). 19 studies (1184 participants) were included. All analyses were performed in R 4.1.2 or RevMan 5.4.1. RESULTS: NMA results showed that compared with the control group, both aerobic + resistance training (ART) (MD = 5.92, 95% CI [0.38; 11.46]) and resistance exercise (RE) (MD = 5.62, 95% CI [2.70; 8.55]) improved quality of life (QoL). ART (P score: 0.72) may have superiority over RE (P score: 0.7). ART (MD = -10.89, 95% CI [-17.67; -4.11]) significantly improved the performance of 400-m test. RE could significantly improve leg strength (MD = 118, 95% CI [78.75; 157.25]) and chest strength (MD = 13.30 [4.07; 22.53]). RE ranked first for strength improvements of leg and chest. CONCLUSION: ART showed better efficacy for the QoL, and significantly improved the performance of 400-m test. RE might be superior for the strengths of leg and chest. ART may be appropriate for patients with less significant muscle strength decline but also other adverse effects of ADT, such as decreased cardiopulmonary function.

19.
Environ Res ; 251(Pt 2): 118730, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492837

RESUMEN

The Budyko framework, widely used to quantify the watershed hydrological response to the watershed characteristics and climate variabilities, is continuously refined to overcome the disadvantages of steady state assumption. However, dynamic variations in vegetations and climate variables are not fully integrated including coverages and precipitation regimes of intensity, frequency, and duration. To address this, we developed an innovative approach for determining the parameter ω in the Budyko framework to quantify the hydrological effects of vegetation restoration in a mesoscale watershed located in northern China. We found that fractional vegetation coverage (FVC), heavy precipitation amount (95pTOT), and the number of precipitation days (R01mm) are significant variables for estimating ω to improve the predictive capability of the watershed response. This extended time-varying Budyko framework can rigorously capture the temporal variations and underlying mechanisms of interactions between vegetation dynamic and precipitation regime partitioning precipitation (P) to R. Under the Budyko-Fu framework, compared to constant ω (ω‾) or ω that only considers FVC (ωP) or precipitation regimes (ωFVC) for simulating R, using ω that integrated FVC and precipitation regimes (ωP-FVC) can improve Nash-Sutcliffe efficiency coefficient (NSE) by 24.81%, while reduced the root mean squared error (RMSE) and relative error (RE) by 64.08% and 65.77%, respectively. Although the increase in climatic dryness (PET/P) resulted in decreased R, the increase in FVC has also a significant contribution to this decrease due to vegetation restoration. We highlight that decrease precipitation intensity (95pTOT) and frequency (R01mm) amplified the hydrological effects of vegetation restoration, causing a 79.09∼100.31% increase in R compared to the independent impact of changes in FVC. We conclude that the extended time-varying Budyko framework by precipitation regime is more rigorous for quantifying the hydrological effects of ecological restoration under climate change and providing more reliable approach for adaptive watershed management.

20.
Small ; : e2310724, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429241

RESUMEN

The portfolio of extraordinary fire retardancy, mechanical properties, dielectric/electric insulating performances, and thermal conductivity (λ) is essential for the practical applications of epoxy resin (EP) in high-end industries. To date, it remains a great challenge to achieve such a performanceportfolio in EP due to their different and even mutually exclusive governing mechanisms. Herein, a multifunctional additive (G@SiO2 @FeHP) is fabricated by in situ immobilization of silica (SiO2 ) and iron phenylphosphinate (FeHP) onto the graphene (G) surface. Benefiting from the synergistic effect of G, SiO2 and FeHP, the addition of 1.0 wt% G@SiO2 @FeHP enables EP to achieve a vertical burning (UL-94) V-0 rating and a limiting oxygen index (LOI) of 30.5%. Besides, both heat release and smoke generation of as-prepared EP nanocomposite are significantly suppressed due to the condensed-phase function of G@SiO2 @FeHP. Adding 1.0 wt% G@SiO2 @FeHP also brings about 44.5%, 61.1%, and 42.3% enhancements in the tensile strength, tensile modulus, and impact strength of EP nanocomposite. Moreover, the EP nanocomposite exhibits well-preserved dielectric and electric insulating properties and significantly enhanced λ. This work provides an integrated strategy for the development of multifunctional EP materials, thus facilitating their high-performance applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...