Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675484

RESUMEN

Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicinal plant that is indigenous to the southern regions of China. Previous research has provided evidence of the significant anti-inflammatory, antibacterial, and anticancer properties exhibited by Z. nitidum. The potential therapeutic effects and cardiac toxicity of Z. nitidum remain uncertain. The aim of this research was to investigate the potential therapeutic properties of the four main compounds of Z. nitidum in cardiovascular diseases, their impact on the electrical activity of cardiomyocytes, and the underlying mechanism of their anti-inflammatory effects. We selected the four compounds from Z. nitidum with a high concentration and specific biological activity: nitidine chloride (NC), chelerythrine chloride (CHE), magnoflorine chloride (MAG), and hesperidin (HE). A proteomic analysis was conducted on the myocardial tissues of beagle dogs following the administration of NC to investigate the role of NC in vivo and the associated biological processes. A bioinformatic analysis was used to predict the in vivo biological processes that MAG, CHE, and HE were involved in. Molecular docking was used to simulate the binding between compounds and their targets. The effect of the compounds on ion channels in cardiomyocytes was evaluated through a patch clamp experiment. Organ-on-a-chip (OOC) technology was developed to mimic the physiological conditions of the heart in vivo. Proteomic and bioinformatic analyses demonstrated that the four compounds of Z. nitidum are extensively involved in various cardiovascular-related biological pathways. The findings from the patch clamp experiments indicate that NC, CHE, MAG, and HE elicit a distinct activation or inhibition of the IK1 and ICa-L in cardiomyocytes. Finally, the anti-inflammatory effects of the compounds on cardiomyocytes were verified using OOC technology. NC, CHE, MAG, and HE demonstrate anti-inflammatory effects through their specific interactions with prostaglandin-endoperoxide synthase 2 (PTGS2) and significantly influence ion channels in cardiomyocytes. Our study provides a foundation for utilizing NC, CHE, MAG, and HE in the treatment of cardiovascular diseases.

2.
Nat Commun ; 15(1): 1481, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368426

RESUMEN

Stable solid electrolytes are essential to high-safety and high-energy-density lithium batteries, especially for applications with high-voltage cathodes. In such conditions, solid electrolytes may experience severe oxidation, decomposition, and deactivation during charging at high voltages, leading to inadequate cycling performance and even cell failure. Here, we address the high-voltage limitation of halide solid electrolytes by introducing local lattice distortion to confine the distribution of Cl-, which effectively curbs kinetics of their oxidation. The confinement is realized by substituting In with multiple elements in Li3InCl6 to give a high-entropy Li2.75Y0.16Er0.16Yb0.16In0.25Zr0.25Cl6. Meanwhile, the lattice distortion promotes longer Li-Cl bonds, facilitating favorable activation of Li+. Our results show that this high-entropy halide electrolyte boosts the cycle stability of all-solid-state battery by 250% improvement over 500 cycles. In particular, the cell provides a higher discharge capacity of 185 mAh g-1 by increasing the charge cut-off voltage to 4.6 V at a small current rate of 0.2 C, which is more challenging to electrolytes|cathode stability. These findings deepen our understanding of high-entropy materials, advancing their use in energy-related applications.

3.
Adv Mater ; 36(14): e2310756, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174831

RESUMEN

Using Li2S cathodes instead of S cathodes presents an opportunity to pair them with Li-free anodes (e.g., graphite), thereby circumventing anode-related issues, such as poor reversibility and safety, encountered in Li-S batteries. However, the moisture-sensitive nature of Li2S causes the release of hazardous H2S and the formation of insulative by-products, increasing the manufacturing difficulty and adversely affecting cathode performance. Here, Li4SnS4, a Li+ conductor that is air-stable according to the hard-soft acid-base principle, is formed in situ and uniformly on Li2S particles because Li2S itself participates in Li4SnS4 formation. When exposed to air (20% relative humidity), the protective Li4SnS4 layer maintains its components and structure, thus contributing to the enhanced stability of the Li2S@Li4SnS4 composite. In addition, the Li4SnS4 layer can accelerate the sluggish conversion of Li2S because of its favorable interfacial charge transfer, and continuously confine lithium polysulfides owing to its integrity during electrochemical processes. A graphite-Li2S pouch cell containing a Li2S@Li4SnS4 cathode is constructed, which shows stable cyclability with 97% capacity retention after 100 cycles. Hence, combining a desirable air-stable Li2S cathode and a highly reversible Li-free configuration offers potential practical applications of graphite-Li2S full cells.

4.
Nat Commun ; 15(1): 351, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191779

RESUMEN

Coupling high-capacity cathode and Li-anode with solid-state electrolyte has been demonstrated as an effective strategy for increasing the energy densities and safety of rechargeable batteries. However, the limited ion conductivity, the large interfacial resistance, and unconstrained Li-dendrite growth hinder the application of solid-state Li-metal batteries. Here, a poly(ether-urethane)-based solid-state polymer electrolyte with self-healing capability is designed to reduce the interfacial resistance and provides a high-performance solid-state Li-metal battery. With its dynamic covalent disulfide bonds and hydrogen bonds, the proposed solid-state polymer electrolyte exhibits excellent interfacial self-healing ability and maintains good interfacial contact. Full cells are assembled with the two integrated electrodes/electrolytes. As a result, the Li||Li symmetric cells exhibit stable long-term cycling for more than 6000 h, and the solid-state Li-S battery shows a prolonged cycling life of 700 cycles at 0.3 C. The use of ultrasound imaging technology shows that the interfacial contact of the integrated structure is much better than those of traditional laminated structure. This work provides an interesting interfacial dual-integrated strategy for designing high-performance solid-state Li-metal batteries.

5.
Aging Cell ; 23(3): e14063, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38098220

RESUMEN

Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.


Asunto(s)
Cardiopatías , MicroARNs , Ratones , Humanos , Animales , Anciano , NAD/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Senescencia Celular/genética , Ratones Transgénicos , Poli(ADP-Ribosa) Polimerasa-1/genética
6.
ACS Nano ; 17(14): 14136-14143, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428153

RESUMEN

Thin lithium (Li) metal foils have been proved to be indispensable yet elusive for practical high-energy-density lithium batteries. Currently, the realization of such thin foils (<50 µm) is impeded by the inferior mechanical processability of metallic Li. In this work, we demonstrate that the combination of solid solution strengthening and second phase strengthening, achieved by the addition of silver fluoride (AgF) to Li metal, can substantially enhance both the strength and ductility of metallic Li. Benefiting from the improved machinability, we succeed in fabricating an ultrathin (down to 5 µm), freestanding, and mechanically robust Li-AgF composite foil. More interestingly, the in situ-formed LixAg-LiF skeleton in the composite facilitates Li diffusion kinetics and uniform Li deposition, where the thin Li-AgF electrode displays a prolonged cycle life over 500 h at 1 mA cm-2 and 1 mAh cm-2 in a carbonate electrolyte. Coupled with a commercial LiCoO2 cathode (3.4 mAh cm-2), the LiCoO2||Li-AgF cell delivers a notable capacity retention of ∼90% over 100 cycles at 0.5 C with a low negative/positive ratio of 2.5.

7.
Eur J Pharmacol ; 954: 175803, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37295764

RESUMEN

Peritoneal adhesion is a common abdominal surgical complication that induces abdominal haemorrhage, intestinal obstruction, infertility, and so forth. The high morbidity and recurrence rate of this disease indicate the need for novel therapeutic approaches. Here, we revealed the protective roles of tetrahydroberberrubine (THBru), a novel derivative of berberine (BBR), in preventing peritoneal adhesion and identified its underlying mechanism in vivo and in vitro. Abrasive surgery was used to create a peritoneal adhesion rat model. We found that THBru administration markedly ameliorated peritoneal adhesion, as indicated by a lowered adhesion score and ameliorated caecal tissue damage. By comparison, THBru exhibited more potent anti-adhesion effects than BBR at the same dose. Mechanistically, THBru inhibited inflammation and extracellular matrix (ECM) accumulation in the microenvironment of adhesion tissue. THBru suppressed the expression of inflammatory cytokines including interleukin-1ß (IL-1ß), IL-6, transforming growth factor ß (TGF-ß), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1), by regulating the transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) and TAK1/nuclear factor κB (NF-κB) signaling pathways. However, THBru promoted the activation of MMP-3 by directly blocking the TIMP-1 activation core and subsequently decreased collagen deposition. Taken together, this study identifies THBru as an effective anti-adhesion agent that regulates diverse mechanisms, thereby outlining its potential therapeutic implications for the treatment of peritoneal adhesion.


Asunto(s)
Berberina , Ratas , Animales , Berberina/farmacología , Berberina/uso terapéutico , Inflamación/tratamiento farmacológico , FN-kappa B/metabolismo , Factor de Crecimiento Transformador beta/uso terapéutico , Matriz Extracelular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
8.
ACS Appl Mater Interfaces ; 15(3): 4044-4052, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36630422

RESUMEN

Solid polymer electrolytes suffer from the low ionic conductivity and poor capability of suppressing lithium dendrites, which have greatly hindered the practical application of solid-state lithium-metal batteries. Here, we report a novel laponite sheet (LS) with a large negatively charged surface as an additive in a solid composite electrolyte (poly(ethylene oxide)-LS) to rearrange the lithium-ion environment and enhance the mechanical strength of the electrolytes (PEO-LS). The strong electrostatic regulation of laponite sheets assists the dissociation of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and constructs multiple transport channels for free lithium ions, achieving a high ionic conductivity of 1.1 × 10-3 S cm-1 at 60 °C. Furthermore, LS facilitates the in situ formation of a LiF-rich interface because of the boosting TFSI- anion concentration, which significantly suppresses lithium dendrites and prevents short circuit. As a result, the assembled LiFePO4|PEO-LS|Li battery demonstrates a long cycle life of over 800 cycles and a high Coulombic efficiency of 99.9% at 1C and 60 °C. When paired with a high-voltage NCM811 cathode, the battery also demonstrates excellent cycling stability and rate capability.

9.
Acta Pharmacol Sin ; 44(2): 332-344, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35948750

RESUMEN

Heart aging is characterized by left ventricular hypertrophy and diastolic dysfunction, which in turn induces a variety of cardiovascular diseases. There is still no therapeutic drug to ameliorate cardiac abnormities in heart aging. In this study we investigated the protective effects of berberine (BBR) and its derivative tetrahydroberberrubine (THBru) against heart aging process. Heart aging was induced in mice by injection of D-galactose (D-gal, 120 mg · kg-1 · d-1, sc.) for 12 weeks. Meanwhile the mice were orally treated with berberine (50 mg · kg-1 · d-1) or THBru (25, 50 mg · kg-1 · d-1) for 12 weeks. We showed that BBR and THBru treatment significantly mitigated diastolic dysfunction and cardiac remodeling in D-gal-induced aging mice. Furthermore, treatment with BBR (40 µM) and THBru (20, 40 µM) inhibited D-gal-induced senescence in primary neonatal mouse cardiomyocytes in vitro. Overall, THBru exhibited higher efficacy than BBR at the same dose. We found that the levels of mitophagy were significantly decreased during the aging process in vivo and in vitro, THBru and BBR promoted mitophagy with different potencies. We demonstrated that the mitophagy-inducing effects of THBru resulted from increased mRNA stability of prohibitin 2 (PHB2), a pivotal factor during mitophagy, thereby upregulating PHB2 protein expression. Knockdown of PHB2 effectively reversed the antisenescence effects of THBru in D-gal-treated cardiomyocytes. On the contrary, overexpression of PHB2 promoted mitophagy and retarded cardiomyocyte senescence, as THBru did. In conclusion, this study identifies THBru as a potent antiaging medicine that induces PHB2-mediated mitophagy and suggests its clinical application prospects.


Asunto(s)
Berberina , Cardiomiopatías , Animales , Ratones , Transducción de Señal , Berberina/farmacología , Berberina/uso terapéutico , Mitofagia , Envejecimiento
10.
Acta Pharmacol Sin ; 44(3): 561-572, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35986213

RESUMEN

Nitidine chloride (NC) is a standard active component from the traditional Chinese medicine Zanthoxylum nitidum (Roxb.) DC. (ZN). NC has shown a variety of pharmacological activities including anti-tumor activity. As a number of anti-tumor drugs cause cardiotoxicity, herein we investigated whether NC exerted a cardiotoxic effect and the underlying mechanism. Aqueous extract of ZN (ZNE) was intraperitoneally injected into rats, while NC was injected into beagles and mice once daily for 4 weeks. Cardiac function was assessed using echocardiography. We showed that both ZNE administered in rats and NC administered in mice induced dose-dependent cardiac hypertrophy and dysfunction, whereas administration of NC at the middle and high dose caused death in Beagles. Consistently, we observed a reduction of cardiac autophagy levels in NC-treated mice and neonatal mouse cardiomyocytes. Furthermore, we demonstrated that autophagy-related 4B cysteine peptidase (ATG4B) may be a potential target of NC, since overexpression of ATG4B reversed the cardiac hypertrophy and reduced autophagy levels observed in NC-treated mice. We conclude that NC induces cardiac hypertrophy via ATG4B-mediated downregulation of autophagy in mice. Thus, this study provides guidance for the safe clinical application of ZN and the use of NC as an anti-tumor drug.


Asunto(s)
Cardiomegalia , Cisteína Endopeptidasas , Animales , Perros , Ratones , Ratas , Autofagia , Benzofenantridinas/farmacología , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Péptido Hidrolasas/efectos de los fármacos , Cisteína Endopeptidasas/efectos de los fármacos
11.
Front Genet ; 13: 870302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769997

RESUMEN

The prognosis of the most common histological subtype of lung cancer, lung adenocarcinoma (LUAD), is relatively poor. Mitochondrial homeostasis depends to a great extent on the coordination between mitophagy and mitochondrial biogenesis, the deregulation of which causes various human diseases, including cancer. There is accumulating evidence that long noncoding RNAs (lncRNAs) are critical in predicting the prognosis and immune response in carcinoma. Therefore, it is critical to discern lncRNAs related to mitochondrial homeostasis in LUAD patients. In this study, we identified mitochondrial homeostasis-related lncRNAs (MHRlncRNAs) by coexpression analysis. In order to construct a prognostic signature composed of three MHRlncRNAs, univariate and multivariate Cox regression analyses were performed. Kaplan-Meier analysis, stratification analysis, principal component analysis (PCA), receiver operating characteristic (ROC) curve, gene set enrichment analysis (GSEA), and nomogram were applied to evaluate and optimize the risk model. Subsequently, we identified the mitochondrial homeostasis-related lncRNA signature (MHLncSig) as an independent predictive factor of prognosis. Based on the LUAD subtypes regrouped by this risk model, we further investigated the underlying tumor microenvironment, tumor mutation burden, and immune landscape behind different risk groups. Likewise, individualized immunotherapeutic strategies and candidate compounds were screened to aim at different risk subtypes of LUAD patients. Finally, we validated the expression trends of lncRNAs included in the risk model using quantitative real-time polymerase chain reaction (qRT-PCR) assays. The established MHLncSig may be a promising tool for predicting the prognosis and guiding individualized treatment in LUAD.

12.
Clin Transl Med ; 12(6): e908, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758595

RESUMEN

BACKGROUND: The development of heart ageing is the main cause of chronic disability, disease and death in the elderly. Ample evidence has established a pivotal role for significantly reduced mitophagy in the ageing heart. However, the underlying mechanisms of mitophagy deficiency in ageing heart are little known. The present study aimed to explore the underlying mechanisms of lncRNA LOC105378097 (Senescence-Mitophagy Associated LncRNA, lncR-SMAL) actions on mitophagy in the setting of heart ageing. METHODS: The expression of lncR-SMAL was measured in serum from different ages of human and heart from different ages of mice through a quantitative real-time polymerase chain reaction. The effects of lncR-SMAL on heart function of mice were assessed by echocardiography and pressure-volume measurements system. Cardiac senescence was evaluated by hematoxylin-eosin staining, senescence-associated ß-galactosidase staining, flow cytometry and western blot analysis of expression of ageing related markes p53 and p21. Cardiomyocyte mitophagy was assessed by western blot, mRFP-GFP-LC3 adenovirus particles transfection and mito-Keima staining. Interaction between lncR-SMAL and Parkin was validated through molecular docking, RNA immunoprecipitation (RIP) and RNA pull-down assay. Ubiquitination assay was performed to explore the molecular mechanism of Parkin inhibition. The effects of lncR-SMAL on mitochondrial function were investigated through electron microscopic examination, JC-1 staining and oxygen consumption rates analysis. RESULTS: The heart-enriched lncR-SMAL reached the expression crest in the serum of human at an age of 60. Exogenously overexpression of lncRNA SMAL deteriorated cardiac function exactly as natural ageing and inhibited the associated cardiomyocytes mitophagy by depressing Parkin protein level. Improved heart ageing and mitophagy caused by Parkin overexpression were reversed by lncR-SMAL in mice. In contrast, the loss of lncR-SMAL in AC16 cells induced the upregulation of Parkin protein and ameliorated mitophagy and mitochondrial dysfunction, resulting in alleviated cardiac senescence. Besides, we found the interaction between lncR-SMAL and Parkin protein through computational docking analysis, pull-down and RIP assay. This would contribute to the promotive effect of lncR-SMAL on Parkin ubiquitination and decrease Parkin protein stability. CONCLUSIONS: The present study for the first time demonstrates a heart-enriched lncRNA, SMAL, that inhibits the mitophagy of cardiomyocytes via the downregulation of Parkin protein, which further contributes to heart ageing and cardiac dysfunction in natural ageing mice.


Asunto(s)
Mitofagia , ARN Largo no Codificante , Envejecimiento/genética , Animales , Humanos , Ratones , Mitofagia/genética , Simulación del Acoplamiento Molecular , ARN Largo no Codificante/genética , ARN Largo no Codificante/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología
13.
Adv Mater ; 34(52): e2200912, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35332962

RESUMEN

It has long been a global imperative to develop high-energy-density lithium-ion batteries (LIBs) to meet the ever-growing electric vehicle market. One of the most effective strategies for boosting the energy density of LIBs is to increase the output voltage, which largely depends upon the cathode materials. As the most-promising cathodes for high-voltage LIBs (>4 V vs Li/Li+ ), four major categories of cathodes including lithium-rich layered oxides, nickel-rich layered oxides, spinel oxides, and high-voltage polyanionic compounds still encounter severe challenges to realize the improvement of output voltage while maintaining high capacity, fast rate capability, and long service life. This review focuses on the key links in the development of high-voltage cathode materials from the lab to industrialization. First, the failure mechanisms of the four kinds of materials are clarified, and the optimization strategies, particularly solutions that are easy for large-scale production, are considered. Then, to bridge the gap between lab and industry, the cost management, safety assessment, practical battery-performance evaluation, and sustainability of the battery technologies, are discussed. Finally, tough challenges and promising strategies for the commercialization of high-voltage cathode materials are summarized to promote the large-scale application of LIBs with high energy densities.

14.
Small Methods ; 5(9): e2100339, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34928068

RESUMEN

Sodium (Na) metal batteries have attracted much attention due to their rich resources, low cost, and high energy density. As a promising solid electrolyte, Na3 Zr2 Si2 PO12 (NZSP) is expected to be used in solid-state Na metal batteries addressing the safety concerns. However, due to the poor contact between NZSP and the Na metal, the interfacial resistance is too large to gain proper performance for practical solid-state batteries (SSBs) application. Here, a SnOx /Sn film is successfully introduced to improve the interface between Na and NZSP for enhancing the electrochemical performance of SSBs. As a result, the Na/NZSP interfacial resistance is dramatically reduced from 581 to 3 Ω cm2 . The modified Na||Na symmetric cell keeps cycling over 1500 h with an overpotential of 40 mV at 0.1 mA cm-2 at room temperature. Even at current densities of 0.3 and 0.5 mA cm-2 , the cell still maintains an excellent cyclability. When coupled with NaTi2 (PO4 )3 and a Na3 V2 (PO4 )3 cathode, the full-cell demonstrates a good performance at 0.2 C and 1 C, respectively. The present work provides an effective way to solve the interface issue of SSBs.

15.
J Am Chem Soc ; 143(17): 6542-6550, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33904722

RESUMEN

The application of flexible, robust, and low-cost solid polymer electrolytes in next-generation all-solid-state lithium metal batteries has been hindered by the low room-temperature ionic conductivity of these electrolytes and the small critical current density of the batteries. Both issues stem from the low mobility of Li+ ions in the polymer and the fast lithium dendrite growth at the Li metal/electrolyte interface. Herein, Mg(ClO4)2 is demonstrated to be an effective additive in the poly(ethylene oxide) (PEO)-based composite electrolyte to regulate Li+ ion transport and manipulate the Li metal/electrolyte interfacial performance. By combining experimental and computational studies, we show that Mg2+ ions are immobile in a PEO host due to coordination with ether oxygen and anions of lithium salts, which enhances the mobility of Li+ ions; more importantly, an in-situ formed Li+-conducting Li2MgCl4/LiF interfacial layer homogenizes the Li+ flux during plating and increases the critical current density up to a record 2 mA cm-2. Each of these factors contributes to the assembly of competitive all-solid-state Li/Li, LiFePO4/Li, and LiNi0.8Mn0.1Co0.1O2/Li cells, demonstrating the importance of surface chemistry and interfacial engineering in the design of all-solid-state Li metal batteries for high-current-density applications.

16.
Angew Chem Int Ed Engl ; 60(7): 3781-3790, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33176045

RESUMEN

Despite of the good stability with Li-metal, Li6.75 La3 Zr1.75 Ta0.25 O12 (LLZTO) suffers from large interfacial resistance and severe Li-metal penetration. Herein, a dual layer ceramic electrolyte of Ti-doped LLZTO(Ti-LLZTO)/LLZTO was developed, with the reducible Ti-LLZTO layer contacting Li-metal and the LLZTO layer contacting cathode. The identical crystal structures of Ti-LLZTO and LLZTO enables a seamless contact and a barrierless Li+ transport between them. The densities of Ti-LLZTO pellets are higher than that of LLZTO. With an in situ reduction of Ti-LLZTO by Li-metal, the interfacial wettability was improved and a mixed ion-electron conducting layer was created. Both features help to reduce defects/pores on interface and homogenize the interfacial ionic/electronic flux, facilitating the reduction of interfacial resistance and suppression of dendrites. With the help of Ti-LLZTO layer, long-term stable lithium plating/stripping was reached in an areal capacity of 3.0 mAh cm-2 .

17.
J Am Chem Soc ; 142(5): 2497-2505, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31927889

RESUMEN

The unclear Li+ local environment and Li+ conduction mechanism in solid polymer electrolytes, especially in a ceramic/polymer composite electrolyte, hinder the design and development of a new composite electrolyte. Moreover, both the low room-temperature Li+ conductivity and large interfacial resistance with a metallic lithium anode of a polymer membrane limit its application below a relatively high temperature. Here we have identified the Li+ distribution and Li+ transport mechanism in a composite polymer electrolyte by investigating a new solid poly(ethylene oxide) (PEO)-based NASICON-LiZr2(PO4)3 composite with 7Li relaxation time and 6Li → 7Li trace-exchange NMR measurements. The Li+ population of the two local environments in the composite electrolytes depends on the Li-salt concentration and the amount of ceramic filler. A composite electrolyte with a [EO]/[Li+] ratio n = 10 and 25 wt % LZP filler has a high Li+ conductivity of 1.2 × 10-4 S cm-1 at 30 °C and a low activation energy owing to the additional Li+ in the mobile A2 environment. Moreover, an in situ formed solid electrolyte interphase layer from the reaction between LiZr2(PO4)3 and a metallic lithium anode stabilized the Li/composite-electrolyte interface and reduced the interfacial resistance, which provided a symmetric Li/Li cell and all-solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells a good cycling performance at 40 °C.

18.
Angew Chem Int Ed Engl ; 59(10): 4131-4137, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31893468

RESUMEN

Li+ -conducting oxides are considered better ceramic fillers than Li+ -insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+ -insulating oxides (fluorite Gd0.1 Ce0.9 O1.95 and perovskite La0.8 Sr0.2 Ga0.8 Mg0.2 O2.55 ) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)-based polymer composite electrolytes, each with a Li+ conductivity above 10-4  S cm-1 at 30 °C. Li solid-state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2-site occupancy originates from the strong interaction between the O2- of Li-salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All-solid-state Li-metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.

19.
Proc Natl Acad Sci U S A ; 116(38): 18815-18821, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31467166

RESUMEN

Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li3/8Sr7/16Ta3/4Zr1/4O3 composite electrolyte with a Li-ion conductivity of 5.4 × 10-5 and 3.5 × 10-4 S cm-1 at 25 and 45 °C, respectively; the strong interaction between the F- of TFSI- (bis-trifluoromethanesulfonimide) and the surface Ta5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm-2 A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO4 and high-voltage Li|LiNi0.8Mn0.1Co0.1O2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability.

20.
Nano Lett ; 18(11): 7414-7418, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30352159

RESUMEN

Lithium carbonate on the surface of garnet blocks Li+ conduction and causes a huge interfacial resistance between the garnet and electrode. To solve this problem, this study presents an effective strategy to reduce significantly the interfacial resistance by replacing Li2CO3 with Li ion conducting Li3N. Compared to the surface Li2CO3 on garnet, Li3N is not only a good Li+ conductor but also offers a good wettability with both the garnet surface and a lithium metal anode. In addition, the introduction of a Li3N layer not only enables a stable contact between the Li anode and garnet electrolyte but also prevents the direct reduction of garnet by Li metal over a long cycle life. As a result, a symmetric lithium cell with this Li3N-modified garnet exhibits an ultralow overpotential and stable plating/stripping cyclability without lithium dendrite growth at room temperature. Moreover, an all-solid-state Li/LiFePO4 battery with a Li3N-modified garnet also displays high cycling efficiency and stability over 300 cycles even at a temperature of 40 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...