Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 366, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363361

RESUMEN

BACKGROUND: The growing body of research on kidney disease in children has identified a broad spectrum of genetic etiologies. METHODS: We conducted a prospective study to evaluate the efficacy of an optimized genetic test and subclinical changes in a real-world context before kidney transplantation. All cases involved recipients under the age of 18 who underwent whole exome sequencing (ES) between 2013 and 2022. RESULTS: The study population included 244 children, with a median age of 13.1 years at transplantation. ES provided a molecular genetic diagnosis in 114 (46.7%) probands with monogenic variants in 15 known disease-causing genes. ES confirmed the suspected clinical diagnosis in 74/244 (30.3%) cases and revised the pre-exome clinical diagnoses in 40/244 (16.4%) cases. ES also established a specific underlying cause for kidney failure for 19 patients who had previously had an unknown etiology. Genetic diagnosis influenced clinical management in 88 recipients (36.1%), facilitated genetic counseling for 18 families (7.4%), and enabled comprehensive assessment of living donor candidates in 35 cases (14.3%). CONCLUSIONS: Genetic diagnosis provides critical insights into the pathogenesis of kidney disease, optimizes clinical strategies concerning risk assessment of living donors, and enhances disease surveillance of recipients.


Asunto(s)
Pruebas Genéticas , Trasplante de Riñón , Humanos , Pruebas Genéticas/métodos , Niño , Femenino , Masculino , Adolescente , Estudios Prospectivos , Preescolar , Secuenciación del Exoma/métodos , Receptores de Trasplantes , Lactante
2.
BMC Med Genomics ; 17(1): 233, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334476

RESUMEN

BACKGROUND: The SLC26A4 gene is the second most common cause of hereditary hearing loss in human. The aim of this study was to utilize the minigene assay in order to identify pathogenic variants of SLC26A4 associated with enlarged vestibular aqueduct (EVA) and hearing loss (HL) in two patients. METHODS: The patients were subjected to multiplex PCR amplification and next-generation sequencing of common deafness genes (including GJB2, SLC26A4, and MT-RNR1), then bioinformatics analysis was performed on the sequencing data to identify candidate pathogenic variants. Minigene experiments were conducted to determine the potential impact of the variants on splicing. RESULTS: Genetic testing revealed that the first patient carried compound heterozygous variants c.[1149 + 1G > A]; [919-2 A > G] in the SLC26A4 gene, while the second patient carried compound heterozygous variants c.[2089 + 3 A > T]; [919-2 A > G] in the same gene. Minigene experiments demonstrated that both c.1149 + 1G > A and c.2089 + 3 A > T affected mRNA splicing. According to the ACMG guidelines and the recommendations of the ClinGen Hearing Loss Expert Panel for ACMG variant interpretation, these variants were classified as "likely pathogenic". CONCLUSIONS: This study identified the molecular etiology of hearing loss in two patients with EVA and elucidated the impact of rare variants on splicing, thus contributing to the mutational spectrum of pathogenic variants in the SLC26A4 gene.


Asunto(s)
Empalme del ARN , Transportadores de Sulfato , Humanos , Transportadores de Sulfato/genética , Masculino , Femenino , Pérdida Auditiva/genética , Proteínas de Transporte de Membrana/genética , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento , Acueducto Vestibular/anomalías , Conexina 26/genética
3.
Am J Med Genet A ; : e63877, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258340

RESUMEN

The rapid development and clinical application of sequencing technologies enable the genetic diagnosis of inherited deafness. P2RX2, as the gene responsible for autosomal dominant non-syndromic deafness-41 (DFNA41), has been proven to be essential for life-long normal hearing and for the protection of noise-induced hearing loss (NIHL). Our present study reports a missense variant in the P2RX2 gene (c.178G > T (p.V60L)), for the second time worldwide, in a five-generation kindred living in Henan, China. Despite carrying the same variant, the affected members in this family appear to present with earlier-onset hearing loss and poorer hearing compared to the original DFNA41 families. In addition, this study supplements some content that was not covered in previous reports. We quantitatively evaluated the pain perception ability of some members using the Pain Vision PS-2100 system, and further found an interesting clinical manifestation, that is, hyperalgesia, in heterozygotes for P2RX2 p.V60L. The cochlear implant (CI) was also provided for the proband of profound deafness, resulting in satisfactory clinical outcomes. Finally, we carried out a systematic review of recently published articles on the P2RX2 gene, which is beneficial for better understanding the role of the P2RX2 gene in the auditory system and the pathogenic mechanisms in sensorineural hearing loss (SNHL).

4.
Cancer Med ; 13(16): e70119, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39158000

RESUMEN

OBJECTIVE: To compare the survival discrimination of the TNM9th and 8th editions for localized and locally advanced anal squamous cell carcinoma (ASCC) treated nonsurgically and suggest a simple revised staging system with data from the Surveillance, Epidemiology, and End Results (SEER) database. METHODS: Overall survival (OS) was the primary endpoint. Survival comparisons between the T and N stages and the different staging systems were performed using the Kaplan-Meier method and log-rank test, followed by correlation analysis and variable importance analysis (VIA). Additionally, multivariate analysis was employed to identify significant predictors, which were further visualized using a nomogram. Finally, calibration curve, C-index, and decision curve analysis (DCA) were applied to assess the performance of the different staging systems. RESULTS: A total of 5384 patients with ASCC were analyzed, revealing superior discrimination OS by the TNM9th edition compared to that by the TNM8th edition. Multivariate analysis identified the T and N stages as significant OS predictors (all p < 0.001). However, ambiguity persisted in stage III subgroups within the TNM9th edition, showing OS times of 102 months for stage IIIA disease, 88 months for stage IIIB disease, and 128 months for stage IIIC disease (all p > 0.05). Correlation analysis demonstrated an increased correlation for the T stage between the TNM8th and 9th editions (ρ value from 0.7 to 0.89), while the N stage correlation decreased (ρ value from 0.84 to 0.56). VIA and the prognostic nomogram highlighted the greater importance of the T stage over the N stage. Based on these findings, a new staging system was developed, and its clinical utility was confirmed through calibration curves, C-index values (from 0.598 to 0.604), and DCAs. CONCLUSIONS: Our new staging system exhibited slightly better prognostic value compared to the TNM9th staging systems for nonmetastatic ASCC and warrants further validation.


Asunto(s)
Neoplasias del Ano , Carcinoma de Células Escamosas , Estadificación de Neoplasias , Nomogramas , Programa de VERF , Humanos , Masculino , Femenino , Neoplasias del Ano/patología , Neoplasias del Ano/mortalidad , Neoplasias del Ano/terapia , Persona de Mediana Edad , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/terapia , Anciano , Adulto , Estimación de Kaplan-Meier , Pronóstico
5.
Am J Cancer Res ; 14(5): 2523-2537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859858

RESUMEN

Chemotherapy is the principal treatment for advanced cancer patients. However, chemotherapeutic resistance, an important hallmark of cancer, is considered as a key impediment to effective therapy in cancer patients. Multiple signaling pathways and factors have been underscored to participate in governing drug resistance. Posttranslational modifications, including ubiquitination, glycosylation, acetylation and phosphorylation, have emerged as key players in modulating drug resistance in gynecological tumors, such as ovarian cancer, cervical cancer and endometrial cancer. In this review article, we summarize the role of ubiquitination in governing drug sensitivity in gynecological cancers. Moreover, we describe the numerous compounds that target ubiquitination in gynecological cancers to reverse chemotherapeutic resistance. In addition, we provide the future perspectives to fully elucidate the mechanisms by which ubiquitination controls drug resistance in gynecological tumors, contributing to restoring drug sensitivity. This review highlights the complex interplay between ubiquitination and drug resistance in gynecological tumors, providing novel insights into potential therapeutic targets and personalized treatment strategies to overcome the bottleneck of drug resistance.

6.
BMC Med Genomics ; 17(1): 89, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627775

RESUMEN

OBJECTIVE: Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS: The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS: Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION: This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.


Asunto(s)
Síndrome Branquio Oto Renal , Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Insuficiencia Renal , Humanos , Embarazo , Femenino , Síndrome Branquio Oto Renal/genética , Síndrome Branquio Oto Renal/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Tirosina Fosfatasas/genética , Pérdida Auditiva/genética , Linaje , Proteínas Nucleares/genética
7.
Hum Genet ; 143(3): 311-329, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38459354

RESUMEN

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modeling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modeling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.


Asunto(s)
Sordera , Mutación Missense , Linaje , Receptores de Superficie Celular , Estereocilios , Animales , Femenino , Humanos , Masculino , Sordera/genética , Secuenciación del Exoma , Genes Recesivos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Modelos Moleculares , Receptores de Superficie Celular/genética , Estereocilios/metabolismo , Estereocilios/patología , Estereocilios/genética
8.
BMC Med Genomics ; 16(1): 333, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114997

RESUMEN

BACKGROUND: Cystinuria is an autosomal recessive disorder characterized by a cystine transport deficiency in the renal tubules due to mutations in two genes: SLC3A1 and SLC7A9. Cystinuria can be classified into three forms based on the genotype: type A, due to mutations in the SLC3A1 gene; type B, due to mutations in the SLC7A9 gene; and type AB, due to mutations in both genes. METHODS: We report a 12-year-old boy from central China with cystine stones. He was from a non-consanguineous family that had no known history of genetic disease. A physical examination showed normal development and neurological behaviors. Whole-exome and Sanger sequencing were used to identify and verify the suspected pathogenic variants. RESULTS: The compound heterozygous variants c.898_905del (p.Arg301AlafsTer6) is located in exon5 and c.1898_1899insAT (p.Asp634LeufsTer46) is located in exon10 of SLC3A1 (NM_000341.4) were deemed responsible for type A cystinuria family. The variant c.898_905del was reported in a Japanese patient in 2000, and the variant c.1898_1899insAT is novel. CONCLUSION: A novel pathogenic heterozygous variant pair of the SLC3A1 gene was identified in a Chinese boy with type A cystinuria, enriching the mutational spectrum of the SLC3A1 gene. We attempted to find a pattern for the association between the genotype of SLC3A1 variants and the manifestations of cystinuria in patients with different onset ages. Our findings have important implications for genetic counseling and the early clinical diagnosis of cystinuria.


Asunto(s)
Cistinuria , Niño , Humanos , Masculino , Cistina/genética , Cistinuria/genética , Cistinuria/diagnóstico , Genotipo , Mutación
9.
BMC Med Genomics ; 16(1): 271, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904145

RESUMEN

Tubulin beta-8 (TUBB8) is expressed exclusively in the oocyte and early embryo, encoding a beta-tubulin polypeptide that participates in the assembly of microtubules. TUBB8 was first attributed to being responsible for oocyte MI arrest. Further studies have demonstrated that patients with different pathogenic variants have variable phenotypes. We report a TUBB8 variant (c.10 A > C) in two siblings who presented different clinical features of primary infertility. The younger sister showed severe oocyte maturation arrest with abnormal morphology, whereas a few mature oocytes and zygotes could be retrieved from the older sister, but no embryo was available for transfer. This variant was previously reported without in vitro functional assays. In the present study, RT‒qPCR and western blot analyses revealed that c.10 A > C reduces TUBB8 mRNA and protein levels; however, immunofluorescence demonstrated that this variant does not change the localization of the protein. These findings confirm the pathogenicity of the c.10 A > C variant and support the relationship between the variant and phenotype in the patients.


Asunto(s)
Infertilidad Femenina , Tubulina (Proteína) , Femenino , Humanos , Variación Biológica Poblacional , Infertilidad Femenina/genética , Oocitos/metabolismo , Oocitos/patología , Hermanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
medRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37873491

RESUMEN

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modelling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modelling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA