Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Heliyon ; 10(9): e30622, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726103

RESUMEN

Hepatocellular carcinoma (HCC) is the most common pathologic type of primary liver cancer. Liver transplantation (LT) is a radical strategy for treating patients with early-stage HCC, which may lead to a better prognosis compared to hepatectomy and ablation. However, survival of patients who develop HCC recurrence after LT is short, and early recurrence is the most common cause of death. Thus, efficient biomarkers are also needed in LT to guide precision therapy to improve patient prognosis and 5-year survival. Protein induced by vitamin K absence or antagonist II (PIVKA-II) is an abnormal prothrombin that cannot activate coagulation, and it is significantly increased in patients with HCC, obstructive jaundice, and those taking vitamin K antagonists. Over the past decades, substantial progress has been made in the study of PIVKA-II in diagnosing, surveilling, and treating HCC, but its role in LT still needs to be elaborated. In this review, we focused on the role of PIVKA-II as a biomarker in LT for HCC, especially its relationship with clinicopathologic features, early recurrence, long-term survival, and donor-recipient selection.

2.
Front Oncol ; 14: 1350043, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715782

RESUMEN

Renal cell carcinoma (RCC) is the most common renal tumor, with lung, bone, and liver being the primary sites of metastasis. Thyroid metastasis, on the other hand, is relatively uncommon. Metastatic tumors in the thyroid gland typically manifest as multiple or isolated nodules, which can be easily overlooked due to the lack of specific clinical and imaging features. However, the identification of thyroid metastasis suggests the presence of systemic metastasis and is indicative of a poor prognosis for patients. In this paper, we present two cases of thyroid metastasis following nephrectomy, with the objective of enhancing understanding among medical community regarding the diagnosis and treatment of thyroid metastasis originating from renal cell carcinoma. By raising awareness about this phenomenon, we emphasize the importance of early detection and diagnosis to improve patient prognoses. The implementation of standardized treatment protocols at the earliest possible stage is also emphasized. Through this research, we aim to contribute to the early identification and management of thyroid metastasis in patients with renal cell carcinoma, ultimately leading to improved outcomes.

3.
Colloids Surf B Biointerfaces ; 238: 113877, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615390

RESUMEN

An ideal bone metastasis animal model is critical and fundamental for mechanistic research and following development of new drug and treatment. Caudal artery (CA) injection allows bone metastasis in the hindlimb, while in-depth targeted and quantitative studies of bone metastasis require a new model to overcome its limitations. Here, we developed a targeted, quantitative, and highly consistent method for the modeling of bone metastasis with cell-based magnetic micro-living-motor (MLM) system created by effectively combining Fe3O4-PDA-Au with biosafety. The MLM system can achieve efficient migration, target site colonization and control tumorigenesis in bone precisely with the application of a magnetic field. In vivo, day 3 post cell injection, tumor bone metastasis signals were observed locally in the injected femur among 82.76% mice of the MLM group as compared to the 56.82% in the CA group, and the signal intensity was 45.1 and 95.9 times stronger than that in the left and right lower limbs of the CA group, respectively. Post-injection day 28, metastasis in vital organs was reduced by approximately 90% in the MLM group compared to the CA group. Our innovative use of the MLM system in the field of tumor modeling opens a new avenue for exploring the mechanisms of tumor bone metastasis, recurrence and drug resistance.


Asunto(s)
Neoplasias Óseas , Animales , Neoplasias Óseas/secundario , Neoplasias Óseas/patología , Ratones , Modelos Animales de Enfermedad , Línea Celular Tumoral , Humanos , Femenino , Campos Magnéticos , Ratones Endogámicos BALB C
4.
Sci Rep ; 14(1): 9272, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653756

RESUMEN

The transpedicular procedure has been widely used in spinal surgery. The determination of the best entry point is the key to perform a successful transpedicular procedure. Various techniques have been used to determine this point, but the results are variable. This study was carried out to determine the posterior endpoint of the lumbar pedicle central axis on the standard anterior-posterior (AP) fluoroscopic images. Computer-aided design technology was used to determine the pedicle central axis and the posterior endpoint of the pedicle central axis on the posterior aspect of the vertebra. The standard AP fluoroscopic image of the lumbar vertebral models by three-dimensional printing was achieved. The endpoint projection on the AP fluoroscopic image was determined in reference to the pedicle cortex projection by the measurements of the angle and distance on the established X-Y coordinate system of the radiologic image. The projection of posterior endpoint of the lumbar pedicle central axis were found to be superior to the X-axis of the established X-Y coordinate system and was located on the pedicle cortex projection on the standard AP fluoroscopic image of the vertebra. The projection point was distributed in different sectors in the coordinate system. It was located superior to the X-axis by 18° to 26° at L1, while they were located superior to the X-axis by 12° to 14° at L2 to L5. The projections of posterior endpoints of the lumbar pedicle central axis were located in different positions on the standard AP fluoroscopic image of the vertebra. The determination method of the projection point was helpful for selecting an entry point for a transpedicular procedure with a fluoroscopic technique.


Asunto(s)
Vértebras Lumbares , Tornillos Pediculares , Vértebras Lumbares/cirugía , Vértebras Lumbares/diagnóstico por imagen , Fluoroscopía/métodos , Humanos , Masculino , Femenino , Fusión Vertebral/métodos , Impresión Tridimensional , Diseño Asistido por Computadora
5.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631280

RESUMEN

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Imagen por Resonancia Magnética , Compuestos de Manganeso , Óxidos , Fotoquimioterapia , Microambiente Tumoral , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Microambiente Tumoral/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Óxidos/química , Óxidos/farmacología , Humanos , Cobre/química , Cobre/farmacología , Tamaño de la Partícula , Nanoestructuras/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fototerapia , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Propiedades de Superficie , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Animales
6.
Skin Res Technol ; 30(4): e13671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558153

RESUMEN

BACKGROUND: Nowadays, diabetic wound healing remains a crucial challenge due to their protracted and uncertain healing process. Traditional Chinese medicine (TCM) has demonstrated the therapeutic value of Sanguis draconis (SD)-Salvia miltiorrhiza (SMR) Herb Pair in diabetic wound healing. However, new administration modes are urgently needed for their convenient and wide-ranging applications. OBJECTIVE: We propose a soluble polyvinylpyrrolidone-based microneedle patch containing the herbal extracts of SD and SMR (MN-SD@SMR) for diabetic wound healing. METHODS: The herbal extracts of SD and SMR are purification and concentration via traditional lyophilization. SD endowed MN-SD@SMR with functions to improve high glycemic blood environment and migration of keratinocyte and fibroblast cells. RESULTS: SMR in MN-SD@SMR could improve blood flow velocity and microcirculation in the wound area. The effectiveness of transdermal release and mechanical strengths of MN-SD@SMR were verified. CONCLUSION: Integrating the advantages of these purified herbal compositions, we demonstrated that MN-SD@SMR had a positive healing effect on the wounds in vitro and vivo. These results indicate that soluble polyvinylpyrrolidone-based microneedle patch containing the herbal extracts of SD and SMR has a promising application value due to their superior capability to promote diabetic wound healing.


Asunto(s)
Diabetes Mellitus , Medicamentos Herbarios Chinos , Salvia miltiorrhiza , Humanos , Povidona , Diabetes Mellitus/tratamiento farmacológico , Cicatrización de Heridas
8.
J Chem Theory Comput ; 20(9): 3590-3600, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38651739

RESUMEN

The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine-guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin-orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π-π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin-orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds.

9.
Front Cardiovasc Med ; 11: 1288659, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440210

RESUMEN

Drug-eluting stents (DES) play a crucial role in treating coronary artery disease (CAD) by preventing restenosis. These stents are coated with drug carriers that release antiproliferative drugs within the vessel. Over the past two decades, DES have been employed in clinical practice using various materials, polymers, and drug types. Despite optimizations in their design and materials to enhance biocompatibility and antithrombotic properties, evaluating their long-term efficacy and safety necessitates improved clinical follow-up and monitoring. To delineate future research directions, this study employs a bibliometric analysis approach. We comprehensively surveyed two decades' worth of literature on DES for CAD using the Web of Science Core Collection (WOSCC). Out of 5,778 articles, we meticulously screened them based on predefined inclusion and exclusion criteria. Subsequently, we conducted an in-depth analysis encompassing annual publication trends, authorship affiliations, journal affiliations, keywords, and more. Employing tools such as Excel 2021, CiteSpace 6.2R3, VOSviewer 1.6.19, and Pajek 5.17, we harnessed bibliometric methods to derive insights from this corpus. Analysis of annual publication data indicates a recent stabilisation or even a downward trend in research output in this area. The United States emerged as the leading contributor, with Columbia University and CRF at the forefront in both publication output and citation impact. The most cited document pertained to standardized definitions for clinical endpoints in coronary stent trials. Our author analysis identifies Patrick W. Serruys as the most prolific contributor, underscoring a dynamic exchange of knowledge within the field.Moreover, the dual chart overlay illustrates a close interrelation between journals in the "Medicine," "Medical," and "Clinical" domains and those in "Health," "Nursing," and "Medicine." Frequently recurring keywords in this research landscape include DES coronary artery disease, percutaneous coronary intervention, implantation, and restenosis. This study presents a comprehensive panorama encompassing countries, research institutions, journals, keyword distributions, and contributions within the realm of DES therapy for CAD. By highlighting keywords exhibiting recent surges in frequency, we elucidate current research hotspots and frontiers, thereby furnishing novel insights to guide future researchers in this evolving field.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38457320

RESUMEN

Non-invasive, closed-loop brain modulation offers an accessible and cost-effective means of evaluating and modulating one's mental and physical well-being, such as Parkinson's disease, epilepsy, and sleep disorders. However, wearable EEG systems pose significant challenges for the analog front-end (AFE) circuits in view of µV-level EEG signals of interest, multiple sources of interference, and ill-defined skin contact. This paper presents a direct-digitization AFE tailored for dry-electrode scalp EEG recording, characterized by wide input dynamic range (DR) and high input impedance. The AFE utilizes a second-order 5-bit delta-delta sigma (Δ-ΔΣ) ADC to shape DC electrode offset (DEO) and low-frequency disturbances while retaining high accuracy. A non-inverting pseudo-differential instrumentation amplifier (IA) embedded in the ADC ensures high input impedance (Zin) and common-mode rejection ratio (CMRR). Fabricated in a standard 0.18-µm CMOS process, the AFE delivers 700-mVpp input signal range, 95.3-dB DR, 87-dB SNDR, and 800-MΩ input impedance at 50 Hz while consuming 88.4µW from a 1.2 V supply. The benefits of high DR and high input impedance have been validated by dry-electrode EEG measurement.

11.
J Nanobiotechnology ; 22(1): 99, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461229

RESUMEN

The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 µg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Estructuras Metalorgánicas , Infecciones por Orthomyxoviridae , Ácidos Ftálicos , Ratones , Humanos , Animales , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Transducción de Señal , Antivirales/farmacología , Antivirales/uso terapéutico
12.
Int J Biol Macromol ; 262(Pt 1): 129970, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325689

RESUMEN

In humans and animals, the pyruvate dehydrogenase kinase (PDK) family proteins (PDKs 1-4) are excessively activated in metabolic disorders such as obesity, diabetes, and cancer, inhibiting the activity of pyruvate dehydrogenase (PDH) which plays a crucial role in energy and fatty acid metabolism and impairing its function. Intervention and regulation of PDH activity have become important research approaches for the treatment of various metabolic disorders. In this study, a small molecule (g25) targeting PDKs and activating PDH, was identified through multi-level computational screening methods. In vivo and in vitro experiments have shown that g25 activated the activity of PDH and reduced plasma lactate and triglyceride level. Besides, g25 significantly decreased hepatic fat deposition in a diet-induced obesity mouse model. Furthermore, g25 enhanced the tumor-inhibiting activity of cisplatin when used in combination. Molecular dynamics simulations and in vitro kinase assay also revealed the specificity of g25 towards PDK2. Overall, these findings emphasize the importance of targeting the PDK/PDH axis to regulate PDH enzyme activity in the treatment of metabolic disorders, providing directions for future related research. This study provides a possible lead compound for the PDK/PDH axis related diseases and offers insights into the regulatory mechanisms of this pathway in diseases.


Asunto(s)
Enfermedades Metabólicas , Neoplasias , Animales , Ratones , Humanos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Fosforilación , Enfermedades Metabólicas/tratamiento farmacológico , Obesidad
13.
Food Chem ; 443: 138568, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301564

RESUMEN

Previous studies showed that transglutaminase (TGase) and microwaves acted synergistically to improve the functional properties of proteins. The mechanism behind this has yet to be elucidated. In this study, the phenomenon of microwaves enhancing TGase activity was experimentally validated. Molecular docking and molecular dynamics simulations revealed that moderate microwaves (105 and 108 V/m) increased the structural flexibility of TGase and promoted the orientation of the side chain carboxylate anion group on Asp255, driving the reaction forward. Also, TGase underwent partial transformation from α-helix to turns or coils at 105 and 108 V/m, exposing more residues in the active site and facilitating the binding of the substrate (CBZ-Gln-Gly) to TGase. However, 109 V/m microwaves completely destroyed the TGase structure, inactivating the enzyme. This study provides insights into the molecular mechanisms underlying the interactions between TGase and substrate subjected to microwaves, promoting the future applications of TGase and microwaves in food processing.


Asunto(s)
Simulación de Dinámica Molecular , Transglutaminasas , Transglutaminasas/metabolismo , Simulación del Acoplamiento Molecular , Microondas , Proteínas
14.
Nanoscale ; 16(9): 4434-4483, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38305732

RESUMEN

After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos
15.
Front Immunol ; 15: 1339207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404590

RESUMEN

Background: Previous studies have reported associations of Crohn's disease (CD) and ulcerative colitis (UC) with the risks of extraintestinal cancers, but the causality remains unclear. Methods: Using genetic variations robustly associated with CD and UC extracted from genome-wide association studies (GWAS) as instrumental variables. Nine types of extraintestinal cancers of European and Asian populations were selected as outcomes. We used the inverse variance weighted method as the primary approach for two-sample Mendelian randomization analysis. Sensitivity analyses were carried out to evaluate the reliability of our findings. Results: In the European population, we found that CD showed a potential causal relationship with pancreatic cancer (OR: 1.1042; 95% CI: 1.0087-1.2088; P=0.0318). Meanwhile, both CD (outliers excluded: OR: 1.0208; 95% CI: 1.0079-1.0339; P=0.0015) and UC (outliers excluded: OR: 1.0220; 95% CI: 1.0051-1.0393; P=0.0108) were associated with a slight increase in breast cancer risk. Additionally, UC exhibited a potential causal effect on cervical cancer (outliers excluded: OR: 1.1091; 95% CI: 1.0286-1.1960; P=0.0071). In the East Asian population, CD had significant causal effects on pancreatic cancer (OR: 1.1876; 95% CI: 1.0741-1.3132; P=0.0008) and breast cancer (outliers excluded: OR: 0.9452; 95% CI: 0.9096-0.9822; P=0.0040). For UC, it exhibited significant causal associations with gastric cancer (OR: 1.1240; 95% CI: 1.0624-1.1891; P=4.7359×10-5), bile duct cancer (OR: 1.3107; 95% CI: 1.0983-1.5641; P=0.0027), hepatocellular carcinoma (OR: 1.2365; 95% CI: 1.1235-1.3608; P=1.4007×10-5) and cervical cancer (OR: 1.3941; 95% CI: 1.1708-1.6599; P=0.0002), as well as a potential causal effect on lung cancer (outliers excluded: OR: 1.1313; 95% CI: 1.0280-1.2449; P=0.0116). Conclusions: Our study provided evidence that genetically predicted CD may be a risk factor for pancreatic and breast cancers in the European population, and for pancreatic cancer in the East Asian population. Regarding UC, it may be a risk factor for cervical and breast cancers in Europeans, and for gastric, bile duct, hepatocellular, lung, and cervical cancers in East Asians. Therefore, patients with CD and UC need to emphasize screening and prevention of site-specific extraintestinal cancers.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Pueblos del Este de Asia , Pueblo Europeo , Neoplasias , Humanos , Neoplasias de la Mama , Colitis Ulcerosa/epidemiología , Colitis Ulcerosa/genética , Enfermedad de Crohn/epidemiología , Enfermedad de Crohn/genética , Pueblos del Este de Asia/genética , Pueblos del Este de Asia/estadística & datos numéricos , Predisposición Genética a la Enfermedad/etnología , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Neoplasias Pancreáticas , Reproducibilidad de los Resultados , Factores de Riesgo , Neoplasias del Cuello Uterino , Pueblo Europeo/genética , Pueblo Europeo/estadística & datos numéricos , Neoplasias/epidemiología , Neoplasias/etnología , Neoplasias/genética
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 318-321, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387942

RESUMEN

Multiple myeloma (MM) is a malignant disease with abnormal proliferation of clonal plasma cells. The development of the disease shows a vast heterogeneity, which is closely related to the interaction between MM cells and bone marrow microenvironment (BMM). The interleukin-6 (IL-6)/interleukin-6 receptor (IL-6R)/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway can regulate the transcription of related soluble factors in BMM, promote the proliferation, anti-apoptosis, drug resistance and guide related bone destruction of MM cells. This article reviews the research progress on the effect of BMM regulated by IL-6/IL-6R/JAK2/STAT3 pathway on the biological behavior of MM, in order to provide new research ideas for targeted therapy and precise therapy of MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Interleucina-6/metabolismo , Janus Quinasa 2 , Médula Ósea/metabolismo , Factor de Transcripción STAT3/metabolismo , Receptores de Interleucina-6/metabolismo , Microambiente Tumoral
17.
Int J Biol Macromol ; 261(Pt 2): 129779, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290628

RESUMEN

Skeletal muscle growth and development in livestock and poultry play a pivotal role in determining the quality and yield of meat production. However, the mechanisms of myogenesis are remained unclear due to it finely regulated by a complex network of biological macromolecules. In this study, leveraging previous sequencing data, we investigated a differentially expressed circular RNA (circSGCB) present in fetal and adult muscle tissues among various ruminant species, including cattle, goat, and sheep. Our analysis revealed that circSGCB is a single exon circRNA, potentially regulated by an adjacent bovine enhancer. Functional analysis through loss-of-function tests demonstrated that circSGCB exerts inhibitory effects on bovine myoblast proliferation while promoting myocytes generation. Furthermore, we discovered that circSGCB primarily localizes to the cytoplasm, where it functions as a molecular sponge by binding to bta-miR-27a-3p. This interaction releases the mRNAs of KLF3 gene and further activates downstream functional pathways. In vivo, studies provided evidence that up-regulation of KLF3 contributes to muscle regeneration. These findings collectively suggest that circSGCB operates via a competing endogenous RNA (ceRNA) mechanism to regulate KLF3, thereby influencing myogenesis in ruminants and highlights it may as potential molecular targets for enhancing meat production in livestock and poultry industries.


Asunto(s)
MicroARNs , Bovinos , Animales , Ovinos , MicroARNs/genética , MicroARNs/metabolismo , ARN Endógeno Competitivo , ARN Circular/genética , ARN Mensajero/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo
18.
Angew Chem Int Ed Engl ; 63(12): e202317995, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38191987

RESUMEN

Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.

19.
Zygote ; 32(2): 119-129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38248909

RESUMEN

Zygotic genome activation (ZGA) is a critical event in early embryonic development, and thousands of genes are involved in this delicate and sophisticated biological process. To date, however, only a handful of these genes have revealed their core functions in this special process, and therefore the roles of other genes still remain unclear. In the present study, we used previously published transcriptome profiling to identify potential key genes (candidate genes) in minor ZGA and major ZGA in both human and mouse specimens, and further identified the conserved genes across species. Our results showed that 887 and 760 genes, respectively, were thought to be specific to human and mouse in major ZGA, and the other 135 genes were considered to be orthologous genes. Moreover, the conserved genes were most enriched in rRNA processing in the nucleus and cytosol, ribonucleoprotein complex biogenesis, ribonucleoprotein complex assembly and ribosome large subunit biogenesis. The findings of this first comprehensive identification and characterization of candidate genes in minor and major ZGA provide relevant insights for future studies on ZGA.


Asunto(s)
Genoma , Cigoto , Animales , Cigoto/metabolismo , Ratones , Humanos , Genoma/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Transcriptoma/genética , Femenino , Desarrollo Embrionario/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...