Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 336: 122109, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670767

RESUMEN

Pulp and paper are gradually transforming from a traditional industry into a new green strategic industry. In parallel, cellulose-derived transparent paper is gaining ground for the development of advanced functional materials for light management with eco-friendly, high performance, and multifunctionality. This review focuses on methods and processes for the preparation of cellulose-derived transparent papers, highlighting the characterization of raw materials linked to responses to different properties, such as optical and mechanical properties. The applications in electronic devices, energy conversion and storage, and eco-friendly packaging are also highlighted with the objective to showcase the untapped potential of cellulose-derived transparent paper, challenging the prevailing notion that paper is merely a daily life product. Finally, the challenges and propose future directions for the development of cellulose-derived transparent paper are identified.

2.
Environ Res ; 252(Pt 1): 118882, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582426

RESUMEN

The concentration of trace elements (chromium, lead, zinc, copper, manganese, and iron) was determined in water, sediment and tissues of two Cyprinidae fish species - Labeo rohita and Tor putitora - collected from the eight sampling stations of Indus River in 2022 for four successive seasons (autumn, winter, spring, summer), and also study the present condition of macroinvertebrates after the construction of hydraulic structure. The obtained results of trace element concentrations in the Indus River were higher than the acceptable drinking water standards by WHO. The nitrate concentration ranges from 5.2 to 59.6 mg l-1, turbidity ranges from 3.00 to 63.9 NTU, total suspended solids and ammonium ions are below the detection limit (<0.05). In the liver, highest dry wt trace elements (µg/g) such as Cr (4.32), Pb (7.07), Zn (58.26), Cu (8.38), Mn (50.27), and Fe (83.9) for the Labeo rohita; and Tor Putitora has significantly greater accumulated concentration (Cr, Pb, Zn, Cu, Mn, Fe) in muscle and liver than did Labeo rohita species. Additionally, lower number of macroinvertebrates were recorded during the monsoonal season than pre-monsoon and post-monsoon. Local communities surrounded by polluted environments are more probably to consume more fish and expose them to higher concentrations of toxic trace elements (lead and copper). The findings also provide a basis for broader ecological management of the Indus River, which significantly influenced human beings and socioeconomic disasters, particularly in the local community.


Asunto(s)
Cyprinidae , Monitoreo del Ambiente , Oligoelementos , Contaminantes Químicos del Agua , Oligoelementos/análisis , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Ríos/química , Pakistán , Invertebrados , Biodiversidad , Cromo/análisis , Cromo/metabolismo , Plomo/agonistas , Plomo/metabolismo , Zinc/análisis , Zinc/metabolismo , Cobre/análisis , Cobre/metabolismo , Manganeso/análisis , Manganeso/metabolismo , Hierro/análisis , Hierro/metabolismo , Estaciones del Año , Cyprinidae/metabolismo , Humanos , Animales , Hígado/metabolismo , Contaminación Química del Agua/estadística & datos numéricos
3.
Int J Biol Macromol ; 253(Pt 2): 126714, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673154

RESUMEN

Carbon dots (CDs) have emerged as a promising subclass of optical nanomaterials with versatile functions in multimodal biosensing. Howbeit the rapid, reliable and reproducible fabrication of multicolor CDs from renewable lignin with unique groups (e.g., -OCH3, -OH and -COOH) and alterable moieties (e.g., ß-O-4, phenylpropanoid structure) remains challenging due to difficult-to-control molecular behavior. Herein we proposed a scalable acid-reagent strategy to engineer a family of heteroatom-doped multicolor lignin carbon dots (LCDs) that are functioned as the bimodal fluorescent off-on sensing of metal-ions and glutathione (GSH). Benefiting from the modifiable photophysical structure via heteroatom-doping (N, S, W, P and B), the multicolor LCDs (blue, green and yellow) with a controllable size distribution of 2.06-2.22 nm deliver the sensing competences to fluorometric probing the distinctive metal-ion systems (Fe3+, Al3+ and Cu2+) under a broad response interval (0-500 µM) with excellent sensitivity and limit of detection (LOD, 0.45-3.90 µM). Meanwhile, we found that the addition of GSH can efficiently restore the fluorescence of LCDs by forming a stable Fe3+-GSH complex with a LOD of 0.97 µM. This work not only sheds light on evolving lignin macromolecular interactions with tunable luminescent properties, but also provides a facile approach to synthesize multicolor CDs with advanced functionalities.


Asunto(s)
Carbono , Puntos Cuánticos , Carbono/química , Lignina/química , Puntos Cuánticos/química , Metales , Colorantes Fluorescentes/química , Iones , Glutatión
4.
J Colloid Interface Sci ; 628(Pt A): 100-108, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35914422

RESUMEN

Chromium (Cr)-containing wastewater has caused a serious threat to the environment due to its high toxicity and mobility. The traditional Cr removal methods are generally based on an inconvenient two-step process with the first transformation of Cr(VI) to Cr(III) and the consecutive removal of Cr(III) by precipitation. Herein, we demonstrate the efficient all-in-one removal of total Cr through the simultaneous photocatalytic reduction of Cr(VI) to Cr(III) and in-situ fixation of Cr(III) over the nonconjugated polymer engineered ZnIn2S4 (P-ZIS) photocatalyst. By in-situ polyvinylpyrrolidone (PVP) modification of ZIS during the preparation process, the resulted P-ZIS can completely reduce Cr(VI) within 60 min under visible light irradiation. The kinetics of Cr(VI) reduction over P-ZIS is 2.8 times as that of pure ZIS, which is proved to be benefited from the enhanced light absorption, uplifted conduction band for strengthening reducibility, and accelerated charge carrier transfer. Moreover, as compared to ZIS, P-ZIS also exhibits significantly improved in-situ adsorption ability for Cr(III), thus resulting in efficient all-in-one elimination of total Cr within a single system. We show that this polymer engineered strategy could be a facile and versatile protocol for modulating the electronic structure and surface chemistry of the semiconductor photocatalysts towards complete, safe, and cost-efficient removal of Cr.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36011920

RESUMEN

In the present study, winter jujube organs including fruit, fruiting leaf and foliage leaf, and associated soils in 14 typical orchards in Binzhou City, Shandong Province, China were collected and determined for the mass fractions of Co, Ni, Cu, Zn, and Cd. The mass fractions of Co, Ni, Cu, Zn, and Cd in plant tissues generally showed an order of Cu > Zn > Ni > Co > Cd as well as those in the soils decreased as Zn > Cu > Ni > Co > Cd. The values of single factor index and Nemerow pollution index suggested the jujube fruits were not polluted by heavy metals. Values of estimated daily intake for all the elements were far below their associated acceptable reference values, indicating no health risks would be caused by a single trace element. The results of targeted hazard quotient (THQ) of the metals in the fruits decreased as Cu > Ni > Zn > Cd accompanying total THQ (TTHQ) lower than 1 showing no hazard would be caused by those metals. Correlation analysis showed soil might not be the main source of heavy metals in winter jujube organs. Bioaccumulation factors (BAFs) for Co, Ni, Zn and Cd in fruits and leaves were far below 1 suggesting their low bioavailablities. The relatively great BAFs of Cu in the leaves might be due to the application of fertilizers and pesticides containing great amounts of Cu through soil and foliar spraying. To sum up, heavy metals tended not to be a major threat to winter jujube cultivation, and winter jujube had great edible safety.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Ziziphus , Cadmio , China , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Medición de Riesgo , Ríos , Suelo , Contaminantes del Suelo/análisis , Zinc
6.
Toxics ; 10(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35878279

RESUMEN

Heavy metals are major pollutants that pose threats to wetland environments. In the present study, surface sediments from wetlands vegetated by invasive species Spartina alterniflora in the Yellow River Delta were collected and determined for the mass fractions of Co, Ni, As, Cd and Pb. Results showed mass fractions of Co, Ni, As, Cd and Pb in the sediments of the S. alterniflora communities ranged from 8.5 to 16.0, 13.9−27.9, 3.2−13.8, 0.08−0.24, and 17.6−37.5 mg/kg dw, respectively, generally presenting an order of Pb > Ni > Co > As > Cd. The levels of heavy metals in sediments in the S. alterniflora communities were higher than those in the wetland vegetated by the native plant species Suaeda heteroptera. Correlations among metal elements were highly significant, suggesting that they might have the same sources. Clay and TOC were important factors affecting the spatial distribution of metals. The Igeo values of the investigated elements in the sediments were frequently lower than 0, revealing the slight pollution status of these metals. Relatively slight values of Eri and RI suggested that the potential ecological risks caused by the 5 metals were low. Our findings could provide a better understanding of the correlation between metal pollution and bio-invasion in wetland ecosystems.

7.
J Hazard Mater ; 435: 129072, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35650749

RESUMEN

The rationally-designed lignocellulose valorization that promotes a novel "waste-treats-pollutant" standpoint is highly desired yet still challenging for the spread of biomass industry. At this point, a cascade technique with the assistance of deep eutectic solvent (DES) fractionation is tailored to dually valorize wheat straw into fluorescent lignin carbon dots (LCDs) and bimetallic Mg-Fe oxide-decorated biochar (MBC) via solvothermal engineering and co-precipitation/pyrolysis respectively. Benefitting from the abundance of ß-aryl ether and hydroxyl groups in DES-extracted lignin, the photoluminescence LCDs emit blue color in a wide excitation span, which can be adopted to selectively detect ferric ions (Fe3+) in a broad dosage scale with a highly linear correlation of 10-50 µM. Taking advantages of the MBC-aided persulfate activation, we propose the efficient arbidol removal system with a universal concentration of 20-200 ppm in the scalable pH ranging from 3 to 11. The dominate migration pathways involving with active oxygen species and surface electron transfer are comprehensively studied via electron paramagnetic resonance, radical-quenching experiments, and theoretical arithmetic. With the endeavor of biorefineries, this full-scale platform ignites the dazzling wildfire from dual lignocellulose valorization that will also seek its accurate position in the kingdoms of functional materials and wastewater restoration.


Asunto(s)
Contaminantes Ambientales , Lignina , Carbono , Carbón Orgánico , Hierro
8.
Ecol Evol ; 12(5): e8905, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35571753

RESUMEN

The exotic plant Spartina alterniflora is expanding rapidly along China's coast regions, seriously threatening native ecosystems. Soil bacteria are important for biogeochemical cycles, including those of carbon, nitrogen, and sulfur, in wetland ecosystems. There is growing evidence that microorganisms are important in case of plant invasion. In the present study, we studied the interlacing area of S. alterniflora and Suaeda heteroptera, selected soil of invaded and non-invaded regions and explored the effect of the composition and diversity of bacterial communities in coastal wetlands. The bacterial community composition of invasive and noninvasive areas was subjected to high-throughput sequencing. In the five areas tested, the main bacterial phyla were Proteobacteria, Bacteroides, and Acidobacteria; the richness of the bacterial community in the soil increased after S. alterniflora invasion, most changes occurred at the genus level. The relative abundances of Desulfobulbus and Sulfurovum were higher in invasive areas than in noninvaded areas. PCA, RDA, and LEfSe analyses found that the S. alterniflora invasion significantly influenced the bacterial community and physicochemical properties of wetland soil. In conclusion, soil microbial community composition was tightly associated with S. alterniflora invasion. This study provide an important scientific basis for further research on the invasion mechanism of S. alterniflora.

9.
Microorganisms ; 11(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36677310

RESUMEN

Parthenium hysterophorus L., as an invasive plant, has negatively impacted the ecosystem functioning and stability of the terrestrial ecosystem in China. However, little information was available for its effects on microorganisms in the Yellow River Delta (YRD), the biggest newly-formed wetland in China. In the present study, high-throughput sequencing technology was used to obtain the bacterial community in soils and roots of different plant species, including P. hysterophorus and some native ones in the YRD. Our results showed that the Proteobacteria, Acidobacteriota, Gemmatimonadota, and Actinobacteriota were dominant in the rhizosphere soils of P. hysterophorus (84.2%) and Setaria viridis (86.47%), and the bulk soils (80.7%). The Proteobacteria and Actinobacteriota were dominant within the root of P. hysterophorus. A total of 2468 bacterial OTUs were obtained from different groups among which 140 were observed in all the groups; 1019 OTUs were shared by P. hysterophorus non-rhizosphere soil bacteria (YNR) P. hysterophorus rhizosphere soil bacteria (YRR) groups. The indexes of the ACE (823.1), Chao1 (823.19), Simpson (0.9971), and Shannon (9.068) were the highest in the YRR groups, showing the greatest bacterial community diversity. Random forest analysis showed that the Methylomirabilota and Dadabacteria (at the phylum level) and the Sphingomonas, and Woeseia (at the genus level) were identified as the main predictors among different groups. The LEfSe results also showed the essential role of the Acidobacteriota in the YRR group. The SourceTracker analysis of the bacterial community of the YRR group was mainly from GBS groups (average 53.14%) and a small part was from YNR groups (average 6.56%), indicating that the P. hysterophorus invasion had a more significant effect on native plants' rhizosphere microorganisms than soil microorganisms. Our observations could provide valuable information for understanding the bacterial diversity and structure of the soil to the invasion of P. hysterophorus.

10.
ChemSusChem ; 14(13): 2740-2748, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-33945234

RESUMEN

Pretreatment with efficient fractionation, eco-friendliness, and low-cost brings high security to future biorefinery systems. Synergistic pretreatment is a compelling blueprint to tackle the compact structure of lignocellulose towards a high-level valorization. Here, a stepwise approach was designed using hydrothermal and deep eutectic solvent (DES) pretreatments to hierarchically extract hemicelluloses and lignin from poplar, while delivering a cellulose-rich substrate that could easily undergo enzymatic hydrolysis to obtain fermentable glucose and residual lignin. The lifetime of recyclable DES showed that the pretreatment efficiency was still largely maintained after the fourth recycling. An enhancement of enzymatic digestibility from 13.9 to 90.4 % was initiated by the deconstruction of amorphous portions and robust cell wall. 23.7 % Xylooligosaccharides (degree of polymerization 2-6), 47.5 % DES-isolated lignin, and 19.2 % cellulose enzymatic lignin were harvested via this coupled process. This study could promote the precise design of sustainable tandem pretreatment that can boost the frontier of highly available biorefinery.

11.
Bioresour Technol ; 310: 123420, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32339889

RESUMEN

An innovative cathodic algal biofilm microbial fuel cell equipped with a bioactive oxygen consuming unit (AB-OCU-MFC) was proposed for enhancing the leachate treatment containing biorefractory organic matters and high strength of ammonium nitrogen. The proposed AB-OCU-MFC performed better with regard to COD, NH4+-N, TN removals and algal biomass yield than standalone algal biofilm-MFC and control reactors. AB-OCU-MFC with OCU of 2 cm thickness removed more than 86% of COD, 89.4% of NH4+-N, 76.7% of TN and produced a maximum voltage of 0.39 V and biomass productivity of 1.23 g·L-1·d-1. The High-throughput sequencing of DNA showed a significant change in microbial community of reactors implemented with OCU, in which the ratio of exoelectrogenic bacteria of anode and denitrifying bacteria on cathode were significantly increased. The results obtained by cathodic algal biofilm MFC with low cost and bioactive barrier of OCU, would provide a new sight for practical application of MFC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Contaminantes Químicos del Agua , Biopelículas , Electrodos , Oxígeno
12.
Bioresour Technol ; 305: 123043, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32114304

RESUMEN

How to propel an efficient exploitation of waste streams is a pivotal tache for the long-range augment of hydrothermal biomass valorization. A facile approach was proposed to simultaneously produce carbon dots (CDs), fermentable sugar, and cellulose enzymatic lignin from agricultural straw with the aid of ionic liquid (IL, 1-aminoethyl-3-methylimidazolium nitrate, [C2NH2MIm][NO3]) catalyzed hydrothermal treatment. The graphite N-doped CDs with bright-blue fluorescence, which was mainly derived from the incorporation of hemicellulose (e.g. xylooligosaccharides), lignin and [C2NH2MIm][NO3], exhibited an average-diameter of 8.14 nm. The exfoliation of amorphous parts and robust fibers was formed to improve cellulose digestibility from 14.7 to 81.6%. The efficient recovery and checkup of lignin pave a way for its potential depolymerization into arenes. This protocol offers a significant benefit for large-scale hydrothermal biorefinery where reduction of process waste is a prime concern, and leads to high-value products (i.e., CDs and lignin) that also fosters the feasibility of bioethanol.

13.
Bioresour Technol ; 303: 122888, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32028215

RESUMEN

A novel mind-set, termed lignin-first biorefinery, is bewitching to synchronously boost lignin output for entirely lignocellulosic utilization. A lignin-first fractionation, using a food-additive derived ionic liquid (1-ethyl-3-methylimidazolium acesulfamate, emimAce) and mild alkaline pretreatments, was formed for the purposely isolating poplar lignin, whilst delivering a cellulose-rich substrate that can be easily available for enzymatic digestion. The emimAce-driven lignin, alkali-soluble lignin and hemicellulose, and accessible cellulose were sequentially gained. We introduce a lignin-first approach to extract the amorphous fractions, destroy the robust architecture, and reform cellulose-I to II, thereby advancing the cellulose bioconversion from 15.4 to 90.5%. A harvest of 70.7% lignin, 52.1% hemicellulose, and 330.1 mg/g glucose was fulfilled from raw poplar. A structural ''beginning-to-end'' analysis of lignin inferred that emimAce ions are expected to interact with lignin ß-aryl-ether due to their aromatic character. It was reasonable to derive benefits from lignin-first technique that can substantially augment the domain of biorefinering.


Asunto(s)
Líquidos Iónicos , Populus , Celulosa , Hidrólisis , Iones , Lignina
14.
RSC Adv ; 9(15): 8700-8706, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35518652

RESUMEN

As the biological recognition element of microbial fuel cell (MFC) toxicity "shock" sensors, the electrode biofilm is perceived to be the crucial issue that determines the sensing performance. A carbon felt and indium tin oxide (ITO) film anode were utilized to examine the effects of anodic biofilm microstructure on MFC toxicity sensor performance, with Pb2+ as the target toxicant. The carbon felt anode based MFC (CF-MFC) established a linear relationship of Pb2+ concentration (C Pb2+ ) vs. voltage inhibition ratio (IR2h) at a C Pb2+ range of 0.1 mg L-1 to 1.2 mg L-1. The highest IR2h was only 38% for CF-MFC. An ITO anode based MFC (ITO-MFC) also revealed a linear relationship between C Pb2+ and IR2h at C Pb2+ of 0.1 mg L-1 to 1.5 mg L-1 but better sensing sensitivity compared with the CF-MFC. The IR2h of ITO-MFC gradually approached 100% as C Pb2+ further increased. The enhanced sensing sensitivity for the ITO anode possibly originated from the thin biofilm that resulted in the efficient exposure of exoelectrogens to Pb2+. The employment of 2D conductive metal oxide with a smooth surface as the anode was able to increase the MFC sensing reliability in real wastewater.

15.
Chemosphere ; 215: 173-181, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30316159

RESUMEN

Bio-electro-Fenton (BEF) system holds great potential for sustainable degradation of refractory organics. Activated carbon (AC) air cathode was modified by co-pyrolyzing of AC with glucose and doping with nano-zero-valent iron (denoted as nZVI@MAC) in order to promote two-electron oxygen reduction reaction (2e- ORR) for enhanced oxidizing performance. Single chamber microbial fuel cells (SCMFCs) with nZVI@MAC cathode was examined to degrade landfill leachate. It was revealed that nZVI@MAC cathode SCMFC showed higher degradation efficiency towards landfill leachate. Six landfill leachate treatment cycles indicated that nZVI@MAC cathode SCMFC exhibited higher COD removal efficiencies over AC and nZVI@AC and greatly enhanced columbic efficiency compared to AC and nZVI@AC cathode. Anti-biofouling effect was found on nZVI@MAC cathode because of the high Fenton oxidation effects at the vicinity of the cathode. Electrochemical characterizations indicated that MAC cathode had superior 2e- ORR capability than AC and nZVI@AC cathode, which was further evidenced by higher H2O2 production from nZVI@MAC cathode in SCMFC. Graphitic structure of MAC was evidenced by High Resolution Transmission Electron Microscopy, and glucose pyrolysis also resulted in nano carbon spheres on the activated carbon skeletons. Raman spectra indicated more defects were generated on MAC during its co-pyrolyzation with glucose.


Asunto(s)
Fuentes de Energía Bioeléctrica , Incrustaciones Biológicas , Carbón Orgánico/química , Electrodos , Peróxido de Hidrógeno/química , Hierro/química , Contaminantes Químicos del Agua/química , Aire , Oxidación-Reducción
16.
Sci Rep ; 8(1): 6561, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700373

RESUMEN

Microwave-induced technique was combined with response surface methodology for optimizing the isolation of polysaccharides from Eucommia ulmoides Oliver leaf. The maximum polysaccharides yield of 12.31% was achieved by microwave extraction at 74 °C for 15 min with a solid to liquid ratio of 1:29 g/mL, which agreed with the predicted value and was 2.9-fold higher than that of the conventional heat-reflux extraction method. The dominant bioactive constituent in extracts was chlorogenic acid (1.3-1.9%), followed by geniposidic acid (1.0-1.7%). The polysaccharides from the optimized extraction had a high molecular weight and polydispersity (Mw 38,830 g/mol, Mw/Mn 2.19), as compared to the fraction prepared in the absence of microwave (Mw 12,055 g/mol, Mw/Mn 1.26). Glucose was the dominant sugar component (38.2-39.1%) of heterogeneous polysaccharides which belonged to a structure of ß-type acidic heteropolysaccharides with a glucan group and highly branched degree. The polysaccharides showed a higher DPPH radical scavenging index (0.87-1.22) than BHT (0.41) but lower than BHA (3.56), which can act as a favorable antioxidant in functional food.


Asunto(s)
Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Eucommiaceae/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Antioxidantes/química , Fraccionamiento Químico , Microondas , Estructura Molecular , Peso Molecular , Extractos Vegetales/química , Polisacáridos/química , Análisis Espectral
17.
Carbohydr Polym ; 182: 106-114, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29279104

RESUMEN

A complex chitosan/ß-cyclodextrin polymer was synthesized by bridging with maleoyl chains followed by cross-linking with glutaraldehyde. The adsorption performance of the synthetic polymer was investigated for selective removal of methyl orange (MO) from aqueous solution. The kinetic behavior was well fitted by the pseudo-second order model, while the adsorption process at equilibrium followed the Langmuir isotherm model. The thermodynamic parameters suggested that the adsorption was exothermic and spontaneous. Under optimal adsorption conditions, the capacity for MO reached 392mg/g with the dosage of 10mg/50mL. Based on the analysis from FTIR, 1H NMR, TGA and zeta potential, the adsorption mechanism could be explained by the synergistic effect of electrostatic attraction of amino groups from chitosan and host-guest interaction from ß-cyclodextrin. This adsorbent also demonstrated high selectivity towards MO due to the unique structure of cross-linked chitosan/ß-cyclodextrin polymer that are complementary to that of MO molecule.


Asunto(s)
Compuestos Azo/aislamiento & purificación , Quitosano/química , Reactivos de Enlaces Cruzados/química , beta-Ciclodextrinas/química , Adsorción , Compuestos Azo/química , Cinética , Conformación Molecular , Soluciones , Agua/química
18.
Bioresour Technol ; 234: 406-414, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28347960

RESUMEN

It is urgent to develop recycled ionic liquids (ILs) as green solvents for sustainable biomass pretreatment. The goal of this study is to explore the availability and performance of reusing 1-allyl-3-methylimidazolium chloride ([amim]Cl) and 1-butyl-3-methylimidazolium acetate ([bmim]OAc) for pretreatment, structural evolution, and enzymatic hydrolysis of eucalyptus. Cellulose enzymatic digestibility slightly decreased with the increased number of pretreatment recycles. The hydrolysis efficiencies of eucalyptus pretreated via 4th recycled ILs were 54.3% for [amim]Cl and 72.8% for [bmim]OAc, which were 5.0 and 6.7-folds higher than that of untreated eucalyptus. Deteriorations of ILs were observed by the relatively lower sugar conversion and lignin removal from eucalyptus after 4th reuse. No appreciable changes in fundamental framework and thermal stability of [amim]Cl were observed even after successive pretreatments, whereas the anionic structure of [bmim]OAc was destroyed or replaced. This study suggested that the biomass pretreatment with recycled ILs was a potential alternative for low-cost biorefinery.


Asunto(s)
Compuestos Alílicos/química , Eucalyptus/química , Imidazoles/química , Líquidos Iónicos/química , Celulosa/química , Tecnología Química Verde , Hidrólisis , Lignina/química , Reciclaje , Solventes/química
19.
Carbohydr Polym ; 137: 685-692, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26686180

RESUMEN

Transesterification is a mild process to prepare cellulose acetate (CA) as compared with the traditional method. In this study, CA fibers were produced from six cellulose raw materials based on a simple and rapid transesterification method. The properties of the CA solutions and the obtained CA fibers were investigated in detail. Results showed that all of the cellulose raw materials were esterified within 15 min, and spinning dopes could be obtained by concentrating the CA solutions via vacuum distillation. The XRD, FT-IR, (1)H, (13)C and HSQC NMR analysis confirmed the successful synthesis of CA. The degree of substitution (DS) of the obtained CA was significantly affected by the degree of polymerization (DP) of cellulose raw materials, which further influenced the viscosity of CA solutions as well as the structural, thermal and mechanical properties of the CA fibers.


Asunto(s)
Celulosa/análogos & derivados , Celulosa/química , Técnicas Químicas Combinatorias , Esterificación , Microfibrillas/química , Microscopía Electrónica de Rastreo , Resistencia a la Tracción
20.
ACS Appl Mater Interfaces ; 7(28): 15641-8, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26135618

RESUMEN

In this study, graphite powder (GP) was introduced into the conductive cellulose/polypyrrole (PPy) composite films to increase their conductivity and thermal stability. The GP was dispersed in ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) before the dissolution of cellulose, and the cellulose/GP/PPy films were prepared by in situ chemical polymerization of PPy nanoparticles on the film surface. The structural characteristics and properties of the composite films were investigated in detail. The GP flakes, which were embedded in the cellulose matrix, increased the thickness and decreased the density of the films, leading to the decrement of mechanical properties. However, the thermal stability of the films was significantly improved by the incorporation of graphite, and the composite film could even substantially maintain the original shape after being burned. In addition, the electrical conductivity of the films was increased seven times, leading to the excellent electromagnetic interference shielding effectiveness. The cellulose/GP/PPy film could be considered as a potential candidate for the effective lightweight electromagnetic interference shielding materials in electronics, radar evasion, aerospace, and other applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...