Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.493
Filtrar
1.
J Affect Disord ; 358: 270-282, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723681

RESUMEN

OBJECTIVE: Ganoderic Acid A (GAA), a primary bioactive component in Ganoderma, has demonstrated ameliorative effects on depressive-like behaviors in a Chronic Social Defeat Stress (CSDS) mouse model. This study aims to elucidate the underlying molecular mechanisms through proteomic analysis. METHODS: C57BL/6 J mice were allocated into control (CON), chronic social defeat stress (CSDS), GAA, and imipramine (IMI) groups. Post-depression induction via CSDS, the GAA and IMI groups received respective treatments of GAA (2.5 mg/kg) and imipramine (10 mg/kg) for five days. Behavioral assessments utilized standardized tests. Proteins from the prefrontal cortex were analyzed using LC-MS, with further examination via bioinformatics and PRM for differential expression. Western blot analysis confirmed protein expression levels. RESULTS: Chronic social defeat stress (CSDS) induced depressive-like behaviors in mice, which were significantly alleviated by GAA treatment, comparably to imipramine (IMI). Proteomic analysis identified distinct proteins in control (305), GAA-treated (949), and IMI-treated (289) groups. Enrichment in mitochondrial and synaptic proteins was evident from GO and PPI analyses. PRM analysis revealed significant expression changes in proteins crucial for mitochondrial and synaptic functions (namely, Naa30, Bnip1, Tubgcp4, Atxn3, Carmil1, Nup37, Apoh, Mrpl42, Tprkb, Acbd5, Dcx, Erbb4, Ppp1r2, Fam3c, Rnf112, and Cep41). Western blot validation in the prefrontal cortex showed increased levels of Mrpl42, Dcx, Fam3c, Ppp1r2, Rnf112, and Naa30 following GAA treatment. CONCLUSION: GAA exhibits potential antidepressant properties, with its action potentially tied to the modulation of synaptic functions and mitochondrial activities.

2.
Nat Commun ; 15(1): 3934, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729938

RESUMEN

A-to-I mRNA editing in animals is mediated by ADARs, but the mechanism underlying sexual stage-specific A-to-I mRNA editing in fungi remains unknown. Here, we show that the eukaryotic tRNA-specific heterodimeric deaminase FgTad2-FgTad3 is responsible for A-to-I mRNA editing in Fusarium graminearum. This editing capacity relies on the interaction between FgTad3 and a sexual stage-specific protein called Ame1. Although Ame1 orthologs are widely distributed in fungi, the interaction originates in Sordariomycetes. We have identified key residues responsible for the FgTad3-Ame1 interaction. The expression and activity of FgTad2-FgTad3 are regulated through alternative promoters, alternative translation initiation, and post-translational modifications. Our study demonstrates that the FgTad2-FgTad3-Ame1 complex can efficiently edit mRNA in yeasts, bacteria, and human cells, with important implications for the development of base editors in therapy and agriculture. Overall, this study uncovers mechanisms, regulation, and evolution of RNA editing in fungi, highlighting the role of protein-protein interactions in modulating deaminase function.


Asunto(s)
Proteínas Fúngicas , Fusarium , Edición de ARN , ARN Mensajero , Fusarium/genética , Fusarium/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Regulación Fúngica de la Expresión Génica , Evolución Molecular , Procesamiento Proteico-Postraduccional , Inosina/metabolismo , Inosina/genética
3.
Ann Diagn Pathol ; 72: 152324, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38733672

RESUMEN

Borderline Brenner tumors (BBT) have a range of morphology that shows considerable overlap with that of malignant Brenner tumors (MBT). In particular, two histological patterns of BBT can be particularly challenging: 1) BBT with intraepithelial carcinoma (BBT-IEC) and 2) BBT with a small nested pattern (BBT-SNP). BBT-IEC is characterized by a tumor with the low-power non-infiltrative silhouette of a conventional BBT, but with increased cytological atypia and mitotic activity similar to that of MBT. Conversely, BBT-SNP is characterized by a complex proliferation of small tumor nests that closely resemble the infiltrative growth pattern of MBT, but without the obligate cytologic atypia and mitotic activity of MBT. We suggest that the combination of p16, p53 and Ki-67 may be helpful in distinguishing these 2 patterns of BBT from both conventional BBT and from MBT. While both conventional BBT and BBT-IEC show a null pattern of p16 expression, our case of BBT-IEC showed aberrant p53 overexpression, albeit with a maturation pattern similar to that described for TP53 mutant mucinous ovarian carcinoma and differentiated vulvar intraepithelial neoplasia (dVIN). Similarly, while BBT-SNP shows an infiltrative-like growth pattern similar to that of MBT, our case also showed a wild-type pattern of p53 expression and a Ki-67 proliferative index similar to areas with conventional BBT histology. In conclusion, in our small case series, we show that the use of immunohistochemistry for p53 and Ki-67 may help to distinguish challenging patterns of BBT from MBT. Further studies are needed to validate this finding in a larger case cohort.

4.
J Nat Prod ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728656

RESUMEN

Bioinspired skeleton transformation of a tricyclic lathyrane-type Euphorbia diterpene was conducted to efficiently construct a tetracyclic tigliane diterpene on a gram scale via a key aldol condensation. The tigliane diterpene was then respectively converted into naturally rare ingenane and rhamnofolane diterpenes through a semipinacol rearrangement and a visible-light-promoted regioselective cyclopropane ring-opening reaction. This work provides a concise strategy for high-efficiency access to diverse polycyclic Euphorbia diterpene skeletons from abundant lathyrane-type natural products and paves the way for biological activity investigation of naturally rare molecules.

5.
Adv Sci (Weinh) ; : e2401564, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704734

RESUMEN

Surface modification is frequently used to solve the problems of low combustion properties and agglomeration for aluminum-based fuels. However, due to the intrinsic incompatibility between the aluminum powder and the organic modifiers, the surface coating is usually uneven and disordered, which significantly deteriorates the uniformity and performances of the Al-based fuels. Herein, a new approach of monolayer nano-vesicular self-assembly is proposed to prepare high-performance Al fuels. Triblock copolymer G-F-G is produced by glycidyl azide polymer (GAP) and 2,2'-(2,2,3,3,4,5,5-Octafluorohexane-1,6-diyl) bis (oxirane) (fluoride) ring-open addition reaction. By utilizing G-F-G vesicular self-assembly in a special solvent, the nano-sized vesicles are firmly adhered to the surface of Al powder through the long-range attraction between the fluorine segments and Al. Meanwhile, the electrostatic repulsion between vesicles ensures an extremely thin coating thickness (≈15 nm), maintaining the monolayer coating structure. Nice ignition, combustion, anti-agglomeration, and water-proof properties of Al@G-F-G(DMF) are achieved, which are superior among the existing Al-based fuels. The derived Al-based fuel has excellent comprehensive properties, which can not only inspire the development of new-generation energetic materials but also provide facile but exquisite strategies for exquisite surface nanostructure construction via ordered self-assembly for many other applications.

6.
Stress Biol ; 4(1): 25, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722370

RESUMEN

Nickel (Ni), a component of urease, is a micronutrient essential for plant growth and development, but excess Ni is toxic to plants. Tomato (Solanum lycopersicum L.) is one of the important vegetables worldwide. Excessive use of fertilizers and pesticides led to Ni contamination in agricultural soils, thus reducing yield and quality of tomatoes. However, the molecular regulatory mechanisms of Ni toxicity responses in tomato plants have largely not been elucidated. Here, we investigated the molecular mechanisms underlying the Ni toxicity response in tomato plants by physio-biochemical, transcriptomic and molecular regulatory network analyses. Ni toxicity repressed photosynthesis, induced the formation of brush-like lateral roots and interfered with micronutrient accumulation in tomato seedlings. Ni toxicity also induced reactive oxygen species accumulation and oxidative stress responses in plants. Furthermore, Ni toxicity reduced the phytohormone concentrations, including auxin, cytokinin and gibberellic acid, thereby retarding plant growth. Transcriptome analysis revealed that Ni toxicity altered the expression of genes involved in carbon/nitrogen metabolism pathways. Taken together, these results provide a theoretical basis for identifying key genes that could reduce excess Ni accumulation in tomato plants and are helpful for ensuring food safety and sustainable agricultural development.

7.
Cancer Invest ; : 1-12, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742677

RESUMEN

BACKGROUND: Aquaporin-8 (AQP8) is involved in impacting glioma proliferation and can effect tumour growth by regulating Intracellular reactive oxygen species (ROS) signalling levels. In addition to transporting H2O2, AQP8 has been shown to affect ROS signaling, but evidence is lacking in gliomas. In this study, we aimed to investigate how AQP8 affects ROS signaling in gliomas. MATERIALS AND METHODS: We constructed A172 and U251 cell lines with AQP8 knockdown and AQP8 rescue by CRISPR/Cas9 technology and overexpression of lentiviral vectors. We used CCK-8 and flow cytometry to test cell proliferation and cycle, immunofluorescence and Mito-Tracker CMXRos to observe the distribution of AQP8 expression in glioma cells, Amplex and DHE to study mitochondria release of H2O2, mitochondrial membrane potential (MMP) and NAD+/NADH ratio to assess mitochondrial function and protein blotting to detect p53 and p21 expression. RESULT: We found that AQP8 co-localised with mitochondria and that knockdown of AQP8 inhibited the release of H2O2 from mitochondria and led to increased levels of ROS in mitochondria, thereby impairing mitochondrial function. We also discovered that AQP8 knockdown resulted in suppression of cell proliferation and was blocked at the G0/G1 phase with increased expression of mitochondrial ROS signalling-related p53/p21. CONCLUSIONS: This finding provides further evidence for mechanistic studies of AQP8 as a prospective target for the treatment of gliomas.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38717888

RESUMEN

Exploiting consistent structure from multiple graphs is vital for multi-view graph clustering. To achieve this goal, we propose an Efficient Balanced Multi-view Graph Clustering via Good Neighbor Fusion (EBMGC-GNF) model which comprehensively extracts credible consistent neighbor information from multiple views by designing a Cross-view Good Neighbors Voting module. Moreover, a novel balanced regularization term based on p-power function is introduced to adjust the balance property of clusters, which helps the model adapt to data with different distributions. To solve the optimization problem of EBMGC-GNF, we transform EBMGC-GNF into an efficient form with graph coarsening method and optimize it based on accelareted coordinate descent algorithm. In experiments, extensive results demonstrate that, in the majority of scenarios, our proposals outperform state-of-the-art methods in terms of both effectiveness and efficiency.

9.
Indian J Hematol Blood Transfus ; 40(2): 261-267, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38708147

RESUMEN

This study aimed to evaluate the severity of ABO hemolytic disease of newborn (ABO-HDN) with negative direct antiglobulin test (DAT), which was identified by elution test. We retrospectively reviewed the clinical records of all neonates admitted with the diagnosis of neonatal hyperbilirubinemia requiring phototherapy or exchange transfusion. Neonates were divided into four groups according to their immunohematology test results. Then their essential laboratory results, magnetic resonance image (MRI), brainstem auditory evoked potential (BAEP) findings, and rate of exchange transfusion were compared between different groups. We found that neonates in ABO-HDN with negative DAT group developed jaundice faster and anaemia more severely than those in the non-HDN group. Although they might get less severe anaemia than neonates in ABO-HDN with positive DAT group and the Rh-HDN group, neonates in ABO HDN with negative DAT group might develop jaundice as quickly as the latter two groups. As to MRI and BAEP findings, there were no significant differences among the four groups. The rate of exchange transfusion in ABO-HDN with negative DAT group was higher than that in the non-HDN group but lower than that in ABO-HDN with positive DAT group, though without statistical significance. It suggested that in the presence of clinical suspicion of ABO-HDN with negative DAT result, the elution test should be added to rule out or confirm the diagnosis to help prevent the morbidity from hyperbilirubinemia.

10.
Nucleic Acids Res ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709875

RESUMEN

Over 150 types of chemical modifications have been identified in RNA to date, with pseudouridine (Ψ) being one of the most prevalent modifications in RNA. Ψ plays vital roles in various biological processes, and precise, base-resolution detection methods are fundamental for deep analysis of its distribution and function. In this study, we introduced a novel base-resolution Ψ detection method named pseU-TRACE. pseU-TRACE relied on the fact that RNA containing Ψ underwent a base deletion after treatment of bisulfite (BS) during reverse transcription, which enabled efficient ligation of two probes complementary to the cDNA sequence on either side of the Ψ site and successful amplification in subsequent real-time quantitative PCR (qPCR), thereby achieving selective and accurate Ψ detection. Our method accurately and sensitively detected several known Ψ sites in 28S, 18S, 5.8S, and even mRNA. Moreover, pseU-TRACE could be employed to measure the Ψ fraction in RNA and explore the Ψ metabolism of different pseudouridine synthases (PUSs), providing valuable insights into the function of Ψ. Overall, pseU-TRACE represents a reliable, time-efficient and sensitive Ψ detection method.

11.
J Pharm Biomed Anal ; 245: 116185, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38723556

RESUMEN

Human epidermal growth factor receptor 2 (HER2) is a key player in the pathogenesis and progression of breast cancer and is currently a primary target for breast cancer immunotherapy. Bioactivity determination is necessary to guarantee the safety and efficacy of therapeutic antibodies targeting HER2. Nevertheless, currently available bioassays for measuring the bioactivity of anti-HER2 mAbs are either not representative or have high variability. Here, we established a reliable reporter gene assay (RGA) based on T47D-SRE-Luc cell line that expresses endogenous HER2 and luciferase controlled by serum response element (SRE) to measure the bioactivity of anti-HER2 antibodies. Neuregulin-1 (NRG-1) can lead to the heterodimerization of HER2 on the cell membrane and induce the expression of downstream SRE-controlled luciferase, while pertuzumab can dose-dependently reverse the reaction, resulting in a good dose-response curve reflecting the activity of the antibody. After optimizing the relevant assay parameters, the established RGA was fully validated based on ICH-Q2 (R1), which demonstrated that the method had excellent specificity, accuracy, precision, linearity, and stability. In summary, this robust and innovative bioactivity determination assay can be applied in the development and screening, release control, biosimilar assessment and stability studies of anti-HER2 mAbs.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38727689

RESUMEN

BACKGROUND: The long-term prognosis of colon cancer patients remains little changed with relatively high mortality and morbidity. Since the most widely used prognostic parameter TNM staging system is less satisfactory in predicting prognosis in early-stage cancers, numerous clinicopathological factors, including tumor necrosis, have been proposed for prognosis stratification, but substantial evidences are still lacking for early-stage colon cancer. MATERIALS AND METHODS: In the retrospective study, a total of eligible 173 stage I-II colon cancer patients, who received tumor radical resection and lymphadenectomy in the local hospital between January 1, 2010, and December 31, 2018, were enrolled for analyzing the prognostic role of tumor necrosis. The primary endpoints included 5-year overall survival (OS) and progression-free survival (PFS). RESULTS: The median follow-up of enrolled early-stage colon cancer patients was 58.3 months. The 2-year and 5-year OS rates were 88.3% and 68.2%, respectively, and the 2-year and 5-year PFS rates were 85.6% and 62.7%, respectively. Seventy-eight patients (45.1%) were diagnosed with tumor necrosis by pathological examination. Demographic analysis revealed a significant association of tumor necrosis with larger tumor size and a marginal association with vascular invasion. Kaplan-Meier survival curves demonstrated that tumor necrosis was associated with worse OS (log-rank P = 0.003) and PFS (log-rank P = 0.002). The independent unfavorable prognostic effect of tumor necrosis was further validated in univariate and multivariate Cox regression analysis (hazard ratio = 1.91 (1.52-2.40), P = 0.004). CONCLUSIONS: The current study confirmed the independent prognostic role of tumor necrosis from pathological review in early-stage colon cancer patients. This pathological criterion promises to help in identifying high-risk subgroup from early-stage colon cancer patients, who may benefit from strict follow-up and adjuvant therapy.

13.
Front Endocrinol (Lausanne) ; 15: 1413519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706695

RESUMEN

[This corrects the article DOI: 10.3389/fendo.2024.1294638.].

14.
Int Immunopharmacol ; 134: 112194, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703570

RESUMEN

BACKGROUND: Approximately 10-20% of Kawasaki disease (KD) patients suffer from intravenous immunoglobulin (IVIG) resistance, placing them at higher risk of developing coronary artery aneurysms. Therefore, we aimed to construct an IVIG resistance prediction tool for children with KD in Shanghai, China. METHODS: Retrospective analysis was conducted on data from 1271 patients diagnosed with KD and the patients were randomly divided into a training set and a validation set in a 2:1 ratio. Machine learning algorithms were employed to identify important predictors associated with IVIG resistance and to build a predictive model. The best-performing model was used to construct a dynamic nomogram. Moreover, receiver operating characteristic curves, calibration plots, and decision-curve analysis were utilized to measure the discriminatory power, accuracy, and clinical utility of the nomogram. RESULTS: Six variables were identified as important predictors, including C-reactive protein, neutrophil ratio, procalcitonin, CD3 ratio, CD19 count, and IgM level. A dynamic nomogram constructed with these factors was available at https://hktk.shinyapps.io/dynnomapp/. The nomogram demonstrated good diagnostic performance in the training and validation sets (area under the receiver operating characteristic curve = 0.816 and 0.800, respectively). Moreover, the calibration curves and decision curves analysis indicated that the nomogram showed good consistency between predicted and actual outcomes and had good clinical benefits. CONCLUSION: A web-based dynamic nomogram for IVIG resistance was constructed with good predictive performance, which can be used as a practical approach for early screening to assist physicians in personalizing the treatment of KD patients in Shanghai.

15.
Front Immunol ; 15: 1395047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694500

RESUMEN

The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.


Asunto(s)
Senescencia Celular , Resistencia a Antineoplásicos , Neoplasias de la Próstata , Humanos , Senescencia Celular/efectos de los fármacos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/metabolismo , Animales
16.
Comput Struct Biotechnol J ; 23: 1689-1704, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38689717

RESUMEN

Background: Mounting evidence underscores the importance of cell communication within the tumor microenvironment, which is pivotal in tumor proliferation, invasion, and metastasis. Exosomes play a crucial role in cell-to-cell communication. Although single-cell RNA sequencing (scRNA-seq) provides insights into individual cell transcriptional characteristics, it falls short of comprehensively capturing exosome-mediated intercellular communication. Method: We analyzed Pancreatic Ductal Adenocarcinoma (PDAC) tissues, separating supernatant and precipitate for exosome purification and single-cell nucleus suspension. We then constructed Single-nucleus RNA sequencing (snRNA-seq) and small RNA-seq libraries from these components. Our bioinformatic analysis integrated these sequences with ligand-receptor analysis and public miRNA data to map the cell communication network. Results: We established intercellular communication networks using bioinformatic analysis to track exosome miRNA effects and ligand-receptor pairs. Significantly, hsa-miR-1293 emerged as a prognostic biomarker for pancreatic cancer, linked to immune evasion, increased myeloid-derived suppressor cells, and poorer prognosis. Targeting this miRNA may enhance anti-tumor immunity and improve outcomes. Conclusion: Our study offers a novel approach to constructing intercellular communication networks using snRNA-seq and exosome-small RNA sequencing. By integrating miRNA tracing with ligand-receptor analysis, we illuminate the complex interactions in the pancreatic cancer microenvironment, highlighting the pivotal role of miRNAs and identifying potential biomarkers and therapeutic targets.

17.
Bone ; : 117123, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735373

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) regulate osteogenic differentiation processes and influence the development of osteoporosis (OP). This study aimed to investigate the potential role of miR-466 l-3p in OP. METHODS: The expression levels of miR-466 l-3p and fibroblast growth factor 23 (FGF23) were quantified in the trabeculae of the femoral neck of 40 individuals with or without OP using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The impact of miR-466 l-3p or FGF23 expression on cell proliferation and the expression levels of runt-related transcription factor 2 (RUNX2), type I collagen (Col1), osteocalcin (OCN), osterix (OSX) and dentin matrix protein 1 (DMP1) was quantified in human bone marrow mesenchymal stem cells (hBMSCs) overexpressing miR-466 l-3p. Furthermore, alkaline phosphatase (ALP) staining and alizarin red staining were performed to measure ALP activity and the levels of calcium deposition, respectively. In addition, bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays were conducted to explore the molecular mechanisms underlying the effects of miR-466 l-3p and FGF23 in osteogenic differentiation of hBMSCs. RESULTS: The expression levels of miR-466 l-3p were significantly lower in femoral neck trabeculae of patients with OP than in the control cohort, whereas FGF23 levels exhibited the opposite trend. Furthermore, miR-466 l-3p levels were upregulated and FGF23 levels were downregulated in hBMSCs during osteogenic differentiation. Moreover, the high miR-466 l-3p expression enhanced the mRNA expression of RUNX2, Col1, OCN, OSX and DMP1, as well as cell proliferation, ALP activity, and calcium deposition in hBMSCs. FGF23 was found to be a direct target of miR-466 l-3p. FGF23 overexpression downregulated the expression of osteoblast markers and inhibited the osteogenic differentiation induced by miR-466 l-3p overexpression. qRT-PCR and Western blot assays showed that miR-466 l-3p overexpression decreased the expression levels of mRNAs and proteins associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, whereas FGF23 upregulation exhibited the opposite trend. CONCLUSION: In conclusion, these findings suggest that miR-466 l-3p enhances the osteogenic differentiation of hBMSCs by suppressing FGF23 expression, ultimately preventing OP.

18.
Virol J ; 21(1): 108, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730285

RESUMEN

BACKGROUND: The immature and suppressed immune response makes transplanted children a special susceptible group to Parvovirus B19 (PVB19). However, the clinical features of transplanted children with PVB19 infection haven't been comprehensively described. METHODS: We searched the medical records of all the transplant recipients who attended the Children's Hospital of Fudan University from 1 Oct 2020 to 31 May 2023, and reviewed the medical literature for PVB19 infection cases among transplanted children. RESULTS: A total of 10 cases of PVB19 infection were identified in 201 transplanted children at our hospital, and the medical records of each of these cases were shown. Also, we retrieved 40 cases of PVB19 infection among transplanted children from the literature, thus summarizing a total of 50 unique cases of PVB19 infection. The median time to the first positive PVB19 DNA detection was 14 weeks post-transplantation. PVB19 IgM and IgG were detected in merely 26% and 24% of the children, respectively. The incidence of graft loss/dysfunction was as high as 36%. Hematopoietic stem cell transplant (HSCT) recipients showed higher PVB19 load, lower HGB level, greater platelet damage, lower PVB19 IgM/IgG positive rates, and more graft dysfunction than solid-organ transplant (SOT) recipients, indicating a more incompetent immune system. CONCLUSIONS: Compared with the published data of transplanted adults, transplanted children displayed distinct clinical features upon PVB19 infection, including lower PVB19 IgM/IgG positive rates, more graft dysfunction, and broader damage on hematopoietic cell lines, which was even more prominent in HSCT recipients, thus should be of greater concern.


Asunto(s)
Anticuerpos Antivirales , Trasplante de Células Madre Hematopoyéticas , Infecciones por Parvoviridae , Parvovirus B19 Humano , Humanos , Parvovirus B19 Humano/inmunología , Parvovirus B19 Humano/genética , Niño , Femenino , Masculino , Preescolar , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Anticuerpos Antivirales/sangre , Lactante , Adolescente , Inmunoglobulina M/sangre , Inmunoglobulina G/sangre , Receptores de Trasplantes , ADN Viral/sangre , Carga Viral , Trasplante de Órganos/efectos adversos
19.
Phytochem Anal ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740517

RESUMEN

INTRODUCTION: Sulfur-fumigation of Paeoniae Radix Alba (PRA) could induce the chemical transformation of its bioactive component paeoniflorin into a sulfur-containing derivative paeoniflorin sulfite, and thus alter the quality, bioactivities, pharmacokinetics, and toxicities of PRA. However, how sulfur-fumigated PRA (S-PRA) affects the quality of PRA-containing complex preparations has not been intensively evaluated. OBJECTIVES: We intend to evaluate the influence of S-PRA on the overall quality of three kinds of Si-Wu-Tang (SWT) formulations, i.e., decoction (SWT-D), granule (SWT-G), and mixture (SWT-M). MATERIAL AND METHODS: An UPLC-DAD multi-components quantification method was used to compare the transfer rates of paeoniflorin sulfite and other 10 bioactive components between S-PRA-containing and NS-PRA-containing SWT formulations. An UPLC-QTOF-MS/MS-based target metabolomics approach was applied to explore the differential sulfur-containing derivatives in S-PRA-containing SWT formulations. RESULTS: The transfer rates of paeoniflorin sulfite in three S-PRA-containing SWT formulations were all higher than 100%. Moreover, S-PRA also increased the transfer rate of 5-hydroxymethylfurfural, 1,2,3,4,6-O-pentagalloylglucose, whereas decreased that of paeoniflorin, albiflorin, and ferulic acid in three SWT formulations. Six pinane monoterpene glucoside sulfites originally identified in S-PRA, were also detectable in three S-PRA-containing SWT formulations. In addition, seven phenolic acid sulfites including (3Z)-6-sulfite-ligustilide, (3E)-6-sulfite-ligustilide, 6,8-disulfite-ligustilide, ferulic acid sulfite, neochlorogenic acid sulfite, chlorogenic acid sulfite, and angelicide sulfite (or isomer) were newly identified in these three S-PRA-containing formulations. CONCLUSION: S-PRA could differentially affect the transfer rate of paeoniflorin sulfite and other bioactive components during the preparation of three SWT formulations and subsequently the overall quality thereof.

20.
Bioorg Chem ; 147: 107377, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653150

RESUMEN

The first systematic acylated diversification of naturally scarce premyrsinane diterpenes, together with their biosynthetic precursors lathyrane diterpene were carried out. Two new series of premyrsinane derivates (1a-32a) and lathyrane derivates (1-32) were synthesized from the naturally abundant lathyrane diterpene Euphorbia factor L3 through a bioinspired approach. The cholinesterase inhibitory and neuroprotective activities of these diterpenes were investigated to explore potential anti-Alzheimer's disease (AD) bioactive lead compounds. In general, the lathyrane diterpenes showed the better acetylcholinesterase (AChE) inhibitory activity than that of premyrsinanes. The lathyrane derivative 17 bearing a 3-dimethylaminobenzoyl moiety showed the best AChE inhibition effect with the IC50 value of 7.1 µM. Molecular docking demonstrated that 17 could bond with AChE well (-8 kal/mol). On the other hand, premyrsinanes showed a better neuroprotection profile against H2O2-induced injury in SH-SY5Y cells. Among them, the premyrsinane diterpene 16a had significant neuroprotective effect with the cell viability rate of 113.5 % at 12.5 µM (the model group with 51.2 %). The immunofluorescence, western blot and reactive oxygen species (ROS) analysis were conducted to demonstrate the mechanism of 16a. Furthermore, a preliminary SAR analysis of the two categories of diterpenes was performed to provide the insights for anti-AD drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...