Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 80: 153370, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33113504

RESUMEN

BACKGROUND: Cisplatin (DDP) is the first-in-class drug for advanced and non-targetable non-small-cell lung cancer (NSCLC). A recent study indicated that DDP could slightly induce non-apoptotic cell death ferroptosis, and the cytotoxicity was promoted by ferroptosis inducer. The agents enhancing the ferroptosis may therefore increase the anticancer effect of DDP. Several lines of evidence supporting the use of phytochemicals in NSCLC therapy. Ginkgetin, a bioflavonoid derived from Ginkgo biloba leaves, showed anticancer effects on NSCLC by triggering autophagy. Ferroptosis can be triggered by autophagy, which regulates redox homeostasis. Thus, we aimed to elucidate the possible role of ferroptosis involved in the synergistic effect of ginkgetin and DDP in cancer therapy. METHODS: The promotion of DDP-induced anticancer effects by ginkgetin was examined via a cytotoxicity assay and western blot. Ferroptosis triggered by ginkgetin in DDP-treated NSCLC was observed via a lipid peroxidation assay, a labile iron pool assay, western blot, and qPCR. With ferroptosis blocking, the contribution of ferroptosis to ginkgetin + DDP-induced cytotoxicity, the Nrf2/HO-1 axis, and apoptosis were determined via a luciferase assay, immunostaining, chromatin immunoprecipitation (CHIP), and flow cytometry. The role of ferroptosis in ginkgetin + DDP-treated NSCLC cells was illustrated by the application of ferroptosis inhibitors, which was further demonstrated in a xenograft nude mouse model. RESULTS: Ginkgetin synergized with DDP to increase cytotoxicity in NSCLC cells, which was concomitant with increased labile iron pool and lipid peroxidation. Both these processes were key characteristics of ferroptosis. The induction of ferroptosis mediated by ginkgetin was further confirmed by the decreased expression of SLC7A11 and GPX4, and a decreased GSH/GSSG ratio. Simultaneously, ginkgetin disrupted redox hemostasis in DDP-treated cells, as demonstrated by the enhanced ROS formation and inactivation of the Nrf2/HO-1 axis. Ginkgetin also enhanced DDP-induced mitochondrial membrane potential (MMP) loss and apoptosis in cultured NSCLC cells. Furthermore, blocking ferroptosis reversed the ginkgetin-induced inactivation of Nrf2/HO-1 as well as the elevation of ROS formation, MMP loss, and apoptosis in DDP-treated NSCLC cells. CONCLUSION: This study is the first to report that ginkgetin derived from Ginkgo biloba leaves promotes DDP-induced anticancer effects, which can be due to the induction of ferroptosis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biflavonoides/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Hemo-Oxigenasa 1/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Células A549 , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Biflavonoides/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Cisplatino/administración & dosificación , Receptores ErbB/genética , Ferroptosis/efectos de los fármacos , Ginkgo biloba/química , Hemo-Oxigenasa 1/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Desnudos , Hojas de la Planta/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Environ Sci Pollut Res Int ; 26(17): 16887-16900, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29725922

RESUMEN

The super-efficiency directional distance function (DDF) with data envelopment analysis (DEA) model (SEDDF-DEA) is more facilitative than to increase traditional method as a rise of energy efficiency in China, which is currently important energy development from Asia-pacific region countries. SEDDF-DEA is promoted as sustained total-factor energy efficiency (TFEE), value added outputs, and Malmquist-Luenberger productivity index (MLPI) to otherwise thorny environmental energy productivity problems with environmental constraint to concrete the means of regression model. This paper assesses the energy efficiency under environmental constraints using panel data covering the years of 2000-2015 in China. Considering the environmental constraints, the results showed that the average TFEE of the whole country followed an upward trend after 2006. The average MLPI score for the whole country increased by 10.57% during 2005-2010, which was mainly due to the progress made in developing and applying environmental technologies. The TFEE of the whole nation was promoted by the accumulation of capital stock, while it was suppressed by excessive production in secondary industries and foreign investment. The primary challenge for the northeast of China is to strengthen industrial transformation and upgrade traditional industries, as well as adjusting the economy and energy structure. The eastern and central regions of the country need to exploit clean- or low-energy industry to improve inefficiencies due to excessive consumption. The western region of China needs to implement renewable energy strategies to promote regional development.


Asunto(s)
Conservación de los Recursos Naturales , Ambiente , Monitoreo del Ambiente , Asia , China , Eficiencia , Industrias , Tecnología
3.
Chin J Physiol ; 59(1): 46-55, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26875562

RESUMEN

Molecular hydrogen (H2) has recently attracted considerable attention for the prevention of oxidative stress-related vascular diseases. The purpose of this study is to evaluate the effects of hydrogen on proliferation and migration of vascular smooth muscle cells (VSMCs) stimulated by angiotensin II (Ang II) in vitro, and on vascular hypertrophy induced by abdominal aortic coarctation (AAC) in vivo. Hydrogen-rich medium (0.6~0.9 ppm) was added 30 min before 10⁻7 M Ang II administration, then the proliferation and migration index were determined 24 h after Ang II stimulation. Hydrogen gas (99.999%) was given by intraperitoneal injection at the dose of 1 ml/100 g/day consecutively for one week before AAC and lasted for 6 weeks in vivo. Hydrogen inhibited proliferation and migration of VSMCs with Ang II stimulation in vitro, and improved the vascular hypertrophy induced by AAC in vivo. Treatment with hydrogen reduced Ang II- or AAC-induced oxidative stress, which was reflected by diminishing the induction of reactive oxygen species (ROS) in Ang II-stimulated VSMCs, inhibiting the levels of 3-nitrotyrosine (3-NT) in vascular and serum malondialdehyde (MDA). Hydrogen treatment also blocked Ang II-induced phosphorylation of the extracellular signal-regulated kinase1/2 (ERK1/2), p38 MAPK, c-Jun NH2-terminal kinase (JNK) and the ezrin/radixin/moesin (ERM) in vitro. Taken together, our studies indicate that hydrogen prevents AAC-induced vascular hypertrophy in vivo, and inhibits Ang II-induced proliferation and migration of VSMCs in vitro possibly by targeting ROS-dependent ERK1/2, p38 MAPK, JNK and ERM signaling. It provides the molecular basis of hydrogen on inhibiting the abnormal proliferation and migration of VSMCs and improving vascular remodeling diseases.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Hidrógeno/farmacología , Proteínas de la Membrana/fisiología , Proteínas de Microfilamentos/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo , Músculo Liso Vascular/citología , Ratas
4.
J Chromatogr Sci ; 50(8): 714-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22634192

RESUMEN

Metal ion affinity chromatography is widely used to purify peptides on the basis of the dissimilarities of their amino acids. However, researchers are interested in the separation differences between different metal ions in this method. In our study, four kinds of commonly used metal ions are compared by the amount of immobilized metal ion on iminodiacetic acid-Sepharose and binding amount of soybean peptide to immobilized iminodiacetic acid-Mn(+) adsorbents and evaluated by high-performance liquid chromatography (HPLC) profiles. The results show that due to the different adsorption behaviors of metal ions, the binding ability order of soybean protein peptide on the column should be Fe(3+) > Cu(2+) > Zn(2+) > Ca(2+). The HPLC profiles show that peptides adsorbed by four kinds of metal ions display similar strong hydrophobic characteristics.


Asunto(s)
Cromatografía de Afinidad/métodos , Metales Pesados/química , Péptidos/aislamiento & purificación , Proteínas de Soja/aislamiento & purificación , Adsorción , Análisis de Varianza , Cromatografía Líquida de Alta Presión , Interacciones Hidrofóbicas e Hidrofílicas , Iminoácidos/química , Metales Pesados/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Sefarosa/química , Proteínas de Soja/química , Proteínas de Soja/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA