Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Cheminform ; 16(1): 41, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622663

RESUMEN

MOTIVATION: Drug combination therapies have shown promise in clinical cancer treatments. However, it is hard to experimentally identify all drug combinations for synergistic interaction even with high-throughput screening due to the vast space of potential combinations. Although a number of computational methods for drug synergy prediction have proven successful in narrowing down this space, fusing drug pairs and cell line features effectively still lacks study, hindering current algorithms from understanding the complex interaction between drugs and cell lines. RESULTS: In this paper, we proposed a Permutable feature fusion network for Drug-Drug Synergy prediction, named PermuteDDS. PermuteDDS takes multiple representations of drugs and cell lines as input and employs a permutable fusion mechanism to combine drug and cell line features. In experiments, PermuteDDS exhibits state-of-the-art performance on two benchmark data sets. Additionally, the results on independent test set grouped by different tissues reveal that PermuteDDS has good generalization performance. We believed that PermuteDDS is an effective and valuable tool for identifying synergistic drug combinations. It is publicly available at https://github.com/littlewei-lazy/PermuteDDS . SCIENTIFIC CONTRIBUTION: First, this paper proposes a permutable feature fusion network for predicting drug synergy termed PermuteDDS, which extract diverse information from multiple drug representations and cell line representations. Second, the permutable fusion mechanism combine the drug and cell line features by integrating information of different channels, enabling the utilization of complex relationships between drugs and cell lines. Third, comparative and ablation experiments provide evidence of the efficacy of PermuteDDS in predicting drug-drug synergy.

2.
Acad Radiol ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458887

RESUMEN

BACKGROUND: Gliomas are the most common primary brain tumours and constitute approximately half of all malignant glioblastomas. Unfortunately, patients diagnosed with malignant glioblastomas typically survive for less than a year. In light of this circumstance, genotyping is an effective means of categorising gliomas. The Ki67 proliferation index, a widely used marker of cellular proliferation in clinical contexts, has demonstrated potential for predicting tumour classification and prognosis. In particular, magnetic resonance imaging (MRI) plays a vital role in the diagnosis of brain tumours. Using MRI to extract glioma-related features and construct a machine learning model offers a viable avenue to classify and predict the level of Ki67 expression. METHODS: This study retrospectively collected MRI data and postoperative immunohistochemical results from 613 glioma patients from the First Affliated Hospital of Nanjing Medical University. Subsequently, we performed registration and skull stripping on the four MRI modalities: T1-weighted (T1), T2-weighted (T2), T1-weighted with contrast enhancement (T1CE), and Fluid Attenuated Inversion Recovery (FLAIR). Each modality's segmentation yielded three distinct tumour regions. Following segmentation, a comprehensive set of features encompassing texture, first-order, and shape attributes were extracted from these delineated regions. Feature selection was conducted using the least absolute shrinkage and selection operator (LASSO) algorithm with subsequent sorting to identify the most important features. These selected features were further analysed using correlation analysis to finalise the selection for machine learning model development. Eight models: logistic regression (LR), naive bayes, decision tree, gradient boosting tree, and support vector classification (SVM), random forest (RF), XGBoost, and LightGBM were used to objectively classify Ki67 expression. RESULTS: In total, 613 patients were enroled in the study, and 24,455 radiomic features were extracted from each patient's MRI. These features were eventually reduced to 36 after LASSO screening, RF importance ranking, and correlation analysis. Among all the tested machine learning models, LR and linear SVM exhibited superior performance. LR achieved the highest area under the curve score of 0.912 ± 0.036, while linear SVM obtained the top accuracy with a score of 0.884 ± 0.031. CONCLUSION: This study introduced a novel approach for classifying Ki67 expression levels using MRI, which has been proven to be highly effective. With the LR model at its core, our method demonstrated its potential in signalling a promising avenue for future research. This innovative approach of predicting Ki67 expression based on MRI features not only enhances our understanding of cell activity but also represents a significant leap forward in brain glioma research. This underscores the potential of integrating machine learning with medical imaging to aid in the diagnosis and prognosis of complex diseases.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38332514

RESUMEN

STUDY DESIGN: Retrospective observational study. OBJECTIVE: To describe the epidemiology of Schmorl's nodes (SN) of primarily developmental cause (SNd) and SN of primarily acquired cause (SNa) separately in the thoracic spine in subjects aged 35-90 years old. SUMMARY OF BACKGROUND DATA: The epidemiology of SN and its relationship with age and gender remain controversial. Based on a pathophysiological hypothesis and the different morphological characteristics, two subtypes of SN may exist and should be considered separately. PATIENTS AND METHODS: Chest CT scans of subjects who came to our institution for health check aged 35-90 years old were retrospectively reviewed. Presence or absence of SN was recorded for each thoracic vertebra. The SNs were further classified into SNd and SNa. The prevalence, location and relationship with age, gender and bone mineral density (BMD) were evaluated separately for the two subtypes. RESULTS: Of the 848 subjects (407 female, mean age, 53±12.2 y) included, 15.7% had SNs. Of the 303 SNs, 49.2% were SNd and 48.5% were SNa. Aging increased the prevalence of SNa while it was not related to the prevalence of SNd. Males had significantly more SNd than females (11.3% vs 4.7%, P<0.001), while the prevalence of SNa was not different between the two genders (10.2% vs 9.1%, P=0.666). A similar distribution of SNd and SNa among thoracic vertebral levels was appreciated, with T9 most frequently involved. Subjects with SNa had lower lumbar BMD than controls (P=0.006), while no significant difference in BMD was found between subjects with SNd and controls (P=0.166). CONCLUSIONS: The clinical characteristics of SN differ based on the developmental and acquired subtype, including the relationship with age, gender and BMD. The subtypes may be considered as distinct clinical entities as a result.

4.
Nat Commun ; 15(1): 188, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168025

RESUMEN

Spintronics in halide perovskites has drawn significant attention in recent years, due to their highly tunable spin-orbit fields and intriguing interplay with lattice symmetry. Here, we perform first-principles calculations to determine the spin relaxation time (T1) and ensemble spin dephasing time ([Formula: see text]) in a prototype halide perovskite, CsPbBr3. To accurately capture spin dephasing in external magnetic fields we determine the Landé g-factor from first principles and take it into account in our calculations. These allow us to predict intrinsic spin lifetimes as an upper bound for experiments, identify the dominant spin relaxation pathways, and evaluate the dependence on temperature, external fields, carrier density, and impurities. We find that the Fröhlich interaction that dominates carrier relaxation contributes negligibly to spin relaxation, consistent with the spin-conserving nature of this interaction. Our theoretical approach may lead to new strategies to optimize spin and carrier transport properties.

5.
Chemosphere ; 346: 140631, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939922

RESUMEN

Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.


Asunto(s)
Compuestos Ferrosos , Metales Pesados , Humanos , Sulfuros , Agua
6.
J Chem Theory Comput ; 20(2): 492-512, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38157422

RESUMEN

Spin relaxation, dephasing, and diffusion are at the heart of spin-based information technology. Accurate theoretical approaches to simulate spin lifetimes (τs), determining how fast the spin polarization and phase information will be lost, are important to the understanding of the underlying mechanism of these spin processes, and invaluable in searching for promising candidates of spintronic materials. Recently, we develop a first-principles real-time density-matrix (FPDM) approach to simulate spin dynamics for general solid-state systems. Through the complete first-principles descriptions of light-matter interaction and scattering processes including electron-phonon, electron-impurity, and electron-electron scatterings with self-consistent spin-orbit coupling, as well as ab initio Landé g-factor, our method can predict τs at various conditions as a function of carrier density and temperature, under electric and magnetic fields. By employing this method, we successfully reproduce experimental results of disparate materials and identify the key factors affecting spin relaxation, dephasing, and diffusion in different materials. Specifically, we predict that germanene has long τs (∼100 ns at 50 K), a giant spin lifetime anisotropy, and spin-valley locking effect under electric fields, making it advantageous for spin-valleytronic applications. Based on our theoretical derivations and ab initio simulations, we propose a new useful electronic quantity, named spin-flip angle θ↑↓, for the understanding of spin relaxation through intervalley spin-flip scattering processes. Our method can be further applied to other emerging materials and extended to simulate exciton spin dynamics and steady-state photocurrents due to photogalvanic effect.

7.
Int J Biol Macromol ; 253(Pt 7): 127398, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37827410

RESUMEN

The simultaneous reduction of Cr(VI) and sequestration of the resulting Cr(III) in one process is highly desirable as a cost-effective and environmental-friendly approach for the decontamination of Cr(VI)-polluted wastewater. However, most of the existing adsorptive materials are only effective in low pH environments (pH = 1-3), severely restricting the adsorption efficiency and cost effectiveness. Herein, we proposed a chitosan-based magnetic porous microsphere (PPy@PMCS) for simultaneous Cr(VI) reduction and Cr(III) sequestration in a wide pH range. Benefiting from its abundant interaction sites, Cr(VI) was effectively adsorbed on the surface and then immediately reduced to Cr(III) with much lower toxicity. Most importantly, the resulting Cr(III) was in-situ sequestrated by the complexation of chitosan matrix. As a result, PPy@PMCS exhibited a maximum Cr(VI) adsorption capacity of 330.42 mg/g at pH 2.0 and an adsorption capacity of 167.82 mg/g even at near neutral pH (6.0), which is superior to most reported adsorbents. Furthermore, the exhausted PPy@PMCS can be rapidly separated from solutions under an external magnetic field and facilely regenerated. The proposed novel biopolymer-based material shows great application potentials in wastewater treatment.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Cinética , Cromo , Biopolímeros , Adsorción , Concentración de Iones de Hidrógeno , Campos Magnéticos
8.
Discov Oncol ; 14(1): 83, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243813

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant type of tumor that is insensitive to cytotoxic chemotherapy and often develops drug resistance. Nevadensin, a bioflavonoid, exhibits anti-cancer properties in some cancers. However, the precise underlying mechanism of nevadensin against liver cancer are poorly understood. We aim to evaluate the efficacy as well as the molecular mechanism of nevadensin in the treatment of liver cancer. METHODS: Effects of nevadensin on HCC cell proliferation and apoptosis were detected using EdU labeling and flow cytometry assays. The molecular mechanism of nevadensin on HCC was determined using RNAseq. The effects of nevadensin on hippo-Yap signaling were verified using western blot and RT-PCR. RESULTS: In this study, we show that nevadensin significantly inhibits growth of HCC cells via inducing cell cycle arrest and apoptosis. RNAseq analysis showed that nevadensin regulates multiple functional signaling pathways associated with cancer including Hippo signaling. Western Blot analysis revealed that nevadensin notably induces activation of the MST1/2- LATS1/2 kinase in HCC cells, further resulting in the primary effector molecule YAP phosphorylation and subsequent degradation. These results indicated that nevadensin might exert its anti-HCC activity through the Hippo-ON mechanism. Moreover, nevadensin could increase the sensitivity of HCC cells to sorafenib by down-regulating YAP and its downstream targets. CONCLUSIONS: The present study indicates that nevadensin could be a potential effective approach to treating HCC, and overcoming sorafeni resistance via inducing activation of Hippo signaling.

10.
BMC Med Educ ; 22(1): 569, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35870929

RESUMEN

BACKGROUND: Undergraduate dental basic research education (UDBRE) is broadly regarded as an important approach for cultivating scientific research talent. This scoping review aims to summarize the current status of UDBRE in terms of educational goals, teaching program and content, assessment system, training outcomes, barriers, and reflections. METHODS: The authors performed a systematic literature search in PubMed, Web of Science, and Education Resources Information Center (ERIC) to identify peer-reviewed articles written in English from their inception to January 29, 2021. Articles were reviewed and screened according to the inclusion and exclusion criteria. Related data from the included publications were then collected and summarized. RESULTS: The authors searched 646 publications and selected 16 articles to include in the study. The education goals included cultivating five major dental basic research capabilities (n=10, 62.5%) and developing interest in basic research (n=2, 12.5%). As for the teaching program, the mentor-guided student research project was the most popular (n=11, 68.8%), followed by didactic courses (n=5, 31.3%), experimental skills training (n=1, 6.3%), and the combination of the above forms (n=3, 18.8%). However, the assessment system and training outcome diverged. Existing evidence showed that UDBRE reached satisfying education outcomes. Barriers included excessive curriculum burden (n=2, 12.5%), tutor shortage (n=3, 18.8%), lack of financial support (n=5, 31.3%), and inadequate research skills and knowledge (n=5, 31.3%). CONCLUSIONS: Although efforts were made, the variation between studies revealed the immature status of UDBRE. A practical UDBRE education system paradigm was put forward. Meanwhile, more research is required to optimize a robust UDBRE system with clear education goals, well-designed teaching forms, and convincing assessment systems.


Asunto(s)
Competencia Clínica , Curriculum , Humanos , Estudiantes
11.
J Hazard Mater ; 431: 128592, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247740

RESUMEN

In this study, ß-Cyclodextrin (CD) modified Fe3S4 nanomaterials were synthesized by a one-step facile strategy and investigated for the removal of Cr(VI). The resulted CD-Fe3S4 exhibited enhanced removal efficiency toward Cr(VI) than bared Fe3S4 with a maximum capacity of 220.26 mg·g-1 as the molar ratio of CD-to-Fe3S4 at 0.2. The effective performance of CD-Fe3S4 toward Cr(VI) could well maintain under oxic conditions and a wide pH range of aqueous solution. A high selectivity for Cr(VI) was achieved in the presence of coexisting cations and anions. More significantly, a single treatment step of CD-Fe3S4 effectively removed chromium from actual electroplating wastewater to the detection limit of 0.004 mg·L-1 that far below the WHO limitation of Cr (VI) (<0.05 mg·L-1) combing with the rapid magnetic separation without adjusting the pH value of wastewater at 7. The effective removal of Cr (VI) by CD-Fe3S4 involved a complex process of surface adsorption/reduction, and solution homogenous reduction and subsequent sequestration of Cr(III) achieving the effective removal of aqueous total Cr. The superior Cr (VI) removal capability and facial separation of CD-Fe3S4 attained its prominent potential application as an effective material for the Cr(VI) removal.


Asunto(s)
Contaminantes Químicos del Agua , beta-Ciclodextrinas , Adsorción , Cromo/análisis , Concentración de Iones de Hidrógeno , Hierro , Fenómenos Magnéticos , Sulfuros , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
12.
Nature ; 599(7885): 404-410, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34789906

RESUMEN

Two-dimensional (2D) semiconductors have attracted intense interest for their unique photophysical properties, including large exciton binding energies and strong gate tunability, which arise from their reduced dimensionality1-5. Despite considerable efforts, a disconnect persists between the fundamental photophysics in pristine 2D semiconductors and the practical device performances, which are often plagued by many extrinsic factors, including chemical disorder at the semiconductor-contact interface. Here, by using van der Waals contacts with minimal interfacial disorder, we suppress contact-induced Shockley-Read-Hall recombination and realize nearly intrinsic photophysics-dictated device performance in 2D semiconductor diodes. Using an electrostatic field in a split-gate geometry to independently modulate electron and hole doping in tungsten diselenide diodes, we discover an unusual peak in the short-circuit photocurrent at low charge densities. Time-resolved photoluminescence reveals a substantial decrease of the exciton lifetime from around 800 picoseconds in the charge-neutral regime to around 50 picoseconds at high doping densities owing to increased exciton-charge Auger recombination. Taken together, we show that an exciton-diffusion-limited model well explains the charge-density-dependent short-circuit photocurrent, a result further confirmed by scanning photocurrent microscopy. We thus demonstrate the fundamental role of exciton diffusion and two-body exciton-charge Auger recombination in 2D devices and highlight that the intrinsic photophysics of 2D semiconductors can be used to create more efficient optoelectronic devices.

13.
Nano Lett ; 21(22): 9594-9600, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34767368

RESUMEN

Through first-principles real-time density-matrix (FPDM) dynamics simulations, we investigated spin relaxation due to electron-phonon and electron-impurity scatterings with spin-orbit coupling (SOC) in two-dimensional Dirac materials silicene and germanene at finite temperatures. We discussed the applicability of conventional descriptions of spin relaxation mechanisms by Elliott-Yafet (EY) and D'yakonov-Perel' (DP) compared to the FPDM method, which is determined by a complex interplay of intrinsic SOC, external fields, and scattering strength. For example, the electric field dependence of the spin lifetime by FPDM is close to the DP mechanism for silicene at room temperature but similar to the EY mechanism for germanene. Because of its stronger SOC strength and buckled structure in contrast to graphene, germanene has a giant spin lifetime anisotropy and spin-valley locking effect under nonzero Ez and low temperatures. More importantly, germanene has a long spin lifetime (∼100 ns at 50 K) and an ultrahigh carrier mobility, making it advantageous for spin-valleytronic applications.

14.
Nanotechnology ; 32(50)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34530406

RESUMEN

Exploring high-efficiency and low-cost bifunctional electrodes for supercapacitors and sensors is significant but challenging. Most of the existing electrodes are mostly single-functional materials with simple structure. Herein, NiCo2O4nanowires as the core and NiMn layered double hydroxide (LDH) as the shell is directly grownin situon carbon cloth (CC) to form a heterostructure (NiMn LDH@NiCo2O4/CC). The performance in supercapacitors and enzyme-free glucose sensing has been systematically studied. Compared with a single NiCo2O4nanowire or NiMn LDH nanosheet, the heterogeneous interface produced by the unique core-shell structure has stronger electronic interaction and abundant active surface area, which shows excellent electrochemical performance. Electrochemical tests demonstrate that the NiMn LDH@NiCo2O4/CC core-shell electrode possesses an area specific capacitance of 2.40 F cm-2and a rate capability of 76.22% at 20 mA cm-2. Simultaneously, asymmetric supercapacitor is assembled with it as the positive electrode and NiFe LDH@NiCo2O4/CC as the negative electrode. The supercapacitor possesses an energy density of 47.74 Wh kg-1when the power density is 175 W kg-1, revealing excellent performance and maintains cycle stability of 93.48% after 6000 cycles at 10 mA cm-2. Additionally, the electrode applied as enzyme-free glucose sensor electrode also displays outstanding sensitivity of 2139µA mM-1cm-2, wide detection range (2µM-3mM and 4-8 mM) and low detection limit of 210 nM, representing good anti-interference performance. This work reveals the multi-metal synergy and rationally designed core-shell structure is critical to the electrochemical performance of bifunctional electrodes.

15.
Sci Total Environ ; 793: 148597, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34182453

RESUMEN

Decades of researches have proved that pyrolysis can not only realize the harmless disposal of waste tire, but also carry out the goal of waste resource utilization via recycling pyrolytic products (e.g. pyrolytic carbon black, CBp). The current work studied the effect of CBp obtained from the commercial scale pyrolysis of waste tire, on the properties of natural rubber and butadiene rubber. CBp was incorporated into a carbon black quality identification standard formula in combination with N234 commercial carbon black (cCB) first. After screening a better substitution ratio, the composite material of CBp and cCB was mixed with more additives, and the experiment was carried out with a real production formula. To restore the practical production situation, the experiment process adopts the most commonly used process to avoid major changes in commercial production. CBp was tested at increasing loading levels as partial or full replacement of cCB. The physico-mechanical properties of the rubber compounds were studied by tests of physical, mechanical, and vulcanization properties. With the increase in the amount of CBp added, the physical and mechanical properties of the rubber compound showed a trend of slightly increasing first and then rapidly decreasing. The addition of CBp can increase the yield strength and stiffness of the rubber, but it may also lead to a decrease in hardness. Meanwhile, the substitution ratio of CBp up to 50% has been proven to improve safety and achieve a more stable vulcanization process of rubber compounds. CBp can replace up to half of cCB without significantly reducing the quality of tire rubber. The economic value of partial replacement of cCB by CBp has also been evaluated, demonstrating that adding a small amount of CBp can directly reduce the cost of raw materials, indirectly reduce the use of fossil energy promoting carbon dioxide reduction worldwide.


Asunto(s)
Pirólisis , Hollín , Reciclaje , Goma
16.
Turk J Haematol ; 38(3): 188-194, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-33938209

RESUMEN

Objective: This study aimed to investigate the clinical characteristics of acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) according to the 2016 World Health Organization classification and the preferred therapy for patients with AML-MRC aged 60-75 years. Materials and Methods: We retrospectively analyzed differences in clinical data among 190 patients with AML-MRC and 667 patients with AML not otherwise specified (AML-NOS). We also compared different therapeutic regimens among patients with AML-MRC aged 60-75 years. Results: Compared with AML-NOS, patients with AML-MRC had significantly different clinical characteristics as well as worse overall survival (OS) (9.2 vs. 13.6 months; p<0.001) and complete remission rates (65.3% vs. 76.2%; p=0.005). Multivariate analysis performed for the whole group (patients with both AML-MRC and AML-NOS) showed that AML-MRC was the independent prognostic factor (p=0.002). Additional multivariate analysis performed for 190 patients with AML-MRC indicated that age (p<0.001) and lactate dehydrogenase (p=0.031) were independent prognostic factors. Compared with the IA/DA regimen [idarubicin and cytarabine (IA) or daunorubicin and cytarabine (DA)], the DAC+CAG regimen [decitabine and half-dose CAG regimen (cytarabine, aclarubicin, and granulocyte colony-stimulating factor)] was associated with better OS (4.5 vs. 6.2 months; p=0.021) in patients aged 60-75 years and categorized into the unfavorable risk group. Conclusion: AML-MRC cases exhibited worse clinical outcomes compared to AML-NOS. Compared to the IA/DA regimen, the DAC+CAG regimen was the optimal choice for patients with AML-MRC in the unfavorable risk group and aged 60-75 years.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , China/epidemiología , Citarabina/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/tratamiento farmacológico , Estudios Retrospectivos
17.
Waste Manag Res ; 39(12): 1440-1450, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33860697

RESUMEN

Pyrolysis offers a more focused alternative to waste tyres treatment. Pyrolytic carbon black (CBp), the main product of waste tyre pyrolysis, and its modified species can be applied to tyre manufacturing realizing its high-value utilization. Modified pyrolytic carbon black/natural rubber composites prepared by a wet compounding (WC) and latex mixing process have become an innovative technology route for waste tyre remanufacturing. The main properties and applications of CBp reported in recent years are reviewed, and the main difficulties affecting its participation in tyre recycling are pointed out. The research progress of using WC technology to replace dry mixing manufacturing of new tyres is summarized. Through literature data and comparative studies, this paper points out that the characteristic of high ash content can be well utilized if CBp is applied to tyre manufacturing. This mini-review proposes a new method for high-value utilization of CBp. The composite mixing of CBp and carbon nano-materials under wet conditions is conducive to the realization of their good dispersion in the rubber matrix. This provides a new idea for customer resource integration and connection of industry development between the tyre production industry and waste tyre disposal management.


Asunto(s)
Carbono , Pirólisis , Reciclaje , Goma
18.
Transl Oncol ; 14(7): 101085, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33813229

RESUMEN

Refractory/relapsed B cell lymphoma patients who received the available anti-CD19 chimeric antigen receptor (CAR) T cells may still experience a short duration of remission. Here in this study, we evaluated the safety and efficacy of a novel dominant-negative programmed cell death-1 (PD-1) armored anti-CD19 CAR T cells. A total of 9 patients (including 4 diffuse large B cell lymphomas, DLBCL, 2 transformed follicular lymphomas, TFL, and 3 follicular lymphomas, FL) received the novel CAR T cells infusion at a dose of more than 1 × 106/kg. Grade ≥ 3 cytokine release syndrome (CRS) and neurotoxicity were observed in 11.1% (n = 1/9) and 11.1% (n = 1/9) of patients, respectively. The overall response rate (ORR) was 77.8% (n = 7/9) and complete response (CR) rate was 55.6% (n = 5/9). Two patients have ongoing CR (all at 20+ months). CAR T cells expanded after infusion and continued to be detectable at 12+ months in patients with ongoing CR. This novel CD19-CAR T cell was safe and effective with durable remissions in patients with refractory/relapsed B cell lymphoma.

19.
Nature ; 591(7850): 385-390, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33731947

RESUMEN

Two-dimensional (2D) materials1,2 and the associated van der Waals (vdW) heterostructures3-7 have provided great flexibility for integrating distinct atomic layers beyond the traditional limits of lattice-matching requirements, through layer-by-layer mechanical restacking or sequential synthesis. However, the 2D vdW heterostructures explored so far have been usually limited to relatively simple heterostructures with a small number of blocks8-18. The preparation of high-order vdW superlattices with larger number of alternating units is exponentially more difficult, owing to the limited yield and material damage associated with each sequential restacking or synthesis step8-29. Here we report a straightforward approach to realizing high-order vdW superlattices by rolling up vdW heterostructures. We show that a capillary-force-driven rolling-up process can be used to delaminate synthetic SnS2/WSe2 vdW heterostructures from the growth substrate and produce SnS2/WSe2 roll-ups with alternating monolayers of WSe2 and SnS2, thus forming high-order SnS2/WSe2 vdW superlattices. The formation of these superlattices modulates the electronic band structure and the dimensionality, resulting in a transition of the transport characteristics from semiconducting to metallic, from 2D to one-dimensional (1D), with an angle-dependent linear magnetoresistance. This strategy can be extended to create diverse 2D/2D vdW superlattices, more complex 2D/2D/2D vdW superlattices, and beyond-2D materials, including three-dimensional (3D) thin-film materials and 1D nanowires, to generate mixed-dimensional vdW superlattices, such as 3D/2D, 3D/2D/2D, 1D/2D and 1D/3D/2D vdW superlattices. This study demonstrates a general approach to producing high-order vdW superlattices with widely variable material compositions, dimensions, chirality and topology, and defines a rich material platform for both fundamental studies and technological applications.

20.
Sci Total Environ ; 772: 145507, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33770869

RESUMEN

Environmental problems caused by waste tires have become so glaring that it has attracted wide attention. This case study seeks to examine the properties of carbon black from waste tires continuous commercial scale pyrolysis. This work aims to contribute to this growing area of research by exploring the difference between the properties of products under the condition of mass production and those under the condition of laboratory scale or pilot scale production. A pyrolysis prototype, with a waste tire mass flow rate of 50-60 t d-1 was constructed and introduced. Steel-included tire granulates were pyrolyzed in micro-negative pressure furnace at about 420 ± 20 °C. This kind of nonstripping, micro-negative pressure and low-temperature continuous thermal pyrolysis technology can reduce the stripping process between rubber and steel wire, reduce the requirement of equipment sealing, and improve the utilization rate of resources. All three products including pyrolytic carbon black (CBp), tire pyrolysis oil (TPO) and pyrolysis gas showed good characteristics. Pyrolysis gas had been successfully re-used for pyrolysis furnaces and dryers. The higher heating value of TPO estimated to 37-40 MJ/ kg, which was comparable to diesel fuel through further treatment. Results of proximate analysis, element analysis, XPS, FTIR, XRD and surface structure confirmed that CBp with commercial scale production showed no apparent data difference with those in other small scale research cases. The morphological changes of carbon black particles were suggested, revealing a possible internal structure of CBp aggregates in commercial scale pyrolysis. This study is an attempt to push the existing research in this field to commercial production. This work generates fresh insight into the viability of continuous commercial pyrolysis and demonstrates the feasibility of the operation, providing reference for many researchers and units who study the pyrolysis technology of waste tires with the feasibility of industrial production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...