Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 11(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35327206

RESUMEN

Since Mentha haplocalyx leaves are rich in bioactive constitutes, particularly volatile compounds, there are higher demands for high-quality dried medicinal and aromatic peppermint products. This study aimed to assess the drying kinetics of hot air thin layer drying Mentha haplocalyx leaves and exploring the effects of hot air-drying temperatures on the textural properties and sensory quality. According to our results, the Midilli model is the best model representing the hot air-drying process. The effective moisture diffusivity (Deff) and activation energy (Ea) of the hot air-drying process were determined as 7.51 × 10-9-3.03 × 10-8 m2/s and 57.98 KJ/moL, respectively. The changes of textural and aromatic profiles of dried Mentha haplocalyx leaves were subsequently evaluated by the SEM, GC-MS and E-nose technology. Changes in leaf cellular membrane structures were observed in this study, indicating that the loss of moisture content induced the shrinkage of leaf cells during the hot air-drying process. Moreover, the altered profile of volatile compounds was identified at the different drying temperatures. As a result of the GC-MS analysis, increasing the content of D-carvone from 61.89%, 69.25% and 78.2% resulted in drying temperatures of 35 °C, 45 °C and 55 °C, respectively; while a decreasing trend of other volatile compounds, including D-Limonene, cineole and l-caryophyllene was detected as drying temperature elevated. Finally, the aromatic profile was evaluated by E-nose, and results of the flavor radar fingerprint and PCA showed that aromatic profiles were significantly altered by the drying process. The overall results elucidated that the hot air thin layer drying at 35 °C efficiently improved the final quality of dried Mentha haplocalyx leaves by maintaining flavor properties.

2.
Zhongguo Zhong Yao Za Zhi ; 47(4): 922-930, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35285191

RESUMEN

The present study explored the kinetics and variation of volatile components of Atractylodis Macrocephalae Rhizoma during the hot-air drying process to obtain the optimal process parameters under multiple goals such as drying efficiency and drying quality. The dry basis moisture content and drying rate curves along with the change of drying time of Atractylodis Macrocephalae Rhizoma were investigated at five levels of drying air temperatures(30, 40, 50, 60, and 70 ℃). The relationship between moisture ratio and time in the drying process of Atractylodis Macrocephalae Rhizoma was fitted and verified by Midilli model, Page model, Overhults model, Modified Page model, Logaritmic model, Two terms Exponential model, and Newton model. Meanwhile, the effective diffusion coefficient of moisture(D_(eff)) and activation energy(E_a) in Atractylodis Macrocephalae Rhizoma were calculated under different drying air temperatures. GC-MS was used to determine the volatile components and content changes of the fresh Atractylodis Macrocephalae Rhizoma and dried products at different temperatures. The dry basis moisture content and drying rate of Atractylodis Macrocephalae Rhizoma were closely related to the temperature of the drying medium, and the moisture of the Atractylodis Macrocephalae Rhizoma decreased with the prolonged drying time. As revealed by the drying rate curve, the drying rate increased with the increase in hot air temperature, and the migration of moisture was accelerated. The comparison of the correlation coefficient(R~2), chi-square(χ~2), and root mean standard error(RMSE) of each model indicated that the parameter average of the Midilli model had the highest degree of fit, with R~2=0.999 2, χ~2=8.78×10~(-5), and RMSE=8.20×10~(-3). Besides, the D_(eff) at 30-70 ℃ was in the range of 1.04×10~(-9)-6.28×10~(-9) m~2·s~(-1), and E_a was 37.47 kJ·mol~(-1). The volatile components of fresh Atractylodis Macrocephalae Rhizoma and dried products at different temperatures were determined by GC-MS, and 18, 18, 18, 17, 17, and 18 compounds were identified respectively, which accounted for more than 84.76% of the volatile components. In conclusion, the hot-air drying of Atractylodis Macrocephalae Rhizoma can be model-fitted and verified and the variation law of the moisture and volatile components of Atractylodis Macrocephalae Rhizoma with temperature is obtained. This study is expected to provide new ideas for exploring the drying characteristics and quality of aromatic Chinese medicine.


Asunto(s)
Atractylodes , Medicamentos Herbarios Chinos , Calor , Cinética , Rizoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...