Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731810

RESUMEN

Dihydrochalcones (DHCs) constitute a specific class of flavonoids widely known for their various health-related advantages. Melatonin (MLT) has received attention worldwide as a master regulator in plants, but its roles in DHC accumulation remain unclear. Herein, the elicitation impacts of MLT on DHC biosynthesis were examined in Lithocarpus litseifolius, a valuable medicinal plant famous for its sweet flavor and anti-diabetes effect. Compared to the control, the foliar application of MLT significantly increased total flavonoid and DHC (phlorizin, trilobatin, and phloretin) levels in L. litseifolius leaves, especially when 100 µM MLT was utilized for 14 days. Moreover, antioxidant enzyme activities were boosted after MLT treatments, resulting in a decrease in the levels of intracellular reactive oxygen species. Remarkably, MLT triggered the biosynthesis of numerous phytohormones linked to secondary metabolism (salicylic acid, methyl jasmonic acid (MeJA), and ethylene), while reducing free JA contents in L. litseifolius. Additionally, the flavonoid biosynthetic enzyme activities were enhanced by the MLT in leaves. Multiple differentially expressed genes (DEGs) in RNA-seq might play a crucial role in MLT-elicited pathways, particularly those associated with the antioxidant system (SOD, CAT, and POD), transcription factor regulation (MYBs and bHLHs), and DHC metabolism (4CL, C4H, UGT71K1, and UGT88A1). As a result, MLT enhanced DHC accumulation in L. litseifolius leaves, primarily by modulating the antioxidant activity and co-regulating the physiological, hormonal, and transcriptional pathways of DHC metabolism.


Asunto(s)
Chalconas , Regulación de la Expresión Génica de las Plantas , Melatonina , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Chalconas/metabolismo , Melatonina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Flavonoides/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo
2.
Small ; : e2308661, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258607

RESUMEN

Passive daytime radiative cooling (PDRC) materials with sustainable energy harvesting capability is critical to concurrently reduce traditional cooling energy utilized for thermal comfort and transfer natural clean energies into electricity. Herein, a versatile photonic film (Ecoflex@BTO@UAFL) based on a novel fluorescent luminescence color passive radiative cooling with triboelectric and piezoelectric effect is developed by filling the dielectric BaTiO3 (BTO) nanoparticles and ultraviolet absorption fluorescent luminescence (UAFL) powder into the elastic Ecoflex matrix. Test results demonstrate that the Ecoflex@BTO@UAFL photonic film exhibits a maximum passive radiative cooling effect of ∽10.1 °C in the daytime. Meanwhile, its average temperature drop in the daytime is ~4.48 °C, which is 0.91 °C higher than that of the Ecoflex@BTO photonic film (3.56 °C) due to the addition of UAFL material. Owing to the high dielectric constant and piezoelectric effect of BTO nanoparticles, the maximum power density (0.53 W m-2 , 1 Hz @ 10 N) of the Ecoflex@BTO photonic film-based hybrid nanogenerator is promoted by 70.9% compared to the Ecoflex film-based TENG. This work provides an ingenious strategy for combining PDRC effects with triboelectric and piezoelectric properties, which can spontaneously achieve thermal comfort and energy conservation, offering a new insight into multifunctional energy saving.

3.
Food Chem X ; 21: 101061, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38187941

RESUMEN

This study investigated the effects of ultra-high pressure (UHP) at different levels on the physicochemical properties, gelling properties, and in vitro digestion characteristics of myofibrillar protein (MP) in Tai Lake whitebait. The α-helix gradually unfolded and transformed into ß-sheet as the pressure increased from 0 to 400 MPa. In addition, the elastic modulus (G') and viscous modulus (G'') of the 400 MPa-treated MP samples increased by 4.8 and 3.8 times, respectively, compared with the control group. The gel properties of the MP also increased significantly after UHP treatment, e.g., the gel strength increased by a 4.8-fold when the pressure reached 400 Mpa, compared with the control group. The results of in vitro simulated digestion showed that the 400 MPa-treated MP gel samples showed a 1.8-fold increase in digestibility and a 69.6 % decrease in digestible particle size compared with the control group.

4.
Small ; 20(6): e2305706, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37788906

RESUMEN

Developing versatile systems that can concurrently achieve energy saving and energy generation is critical to accelerate carbon neutrality. However, challenges on designing highly effective, large scale, and multifunctional photonic film hinder the concurrent combination of passive daytime radiative cooling (PDRC) and utilization of sustainable clean energies. Herein, a versatile scalable photonic film (Ecoflex@h-BN) with washable property and excellent mechanical stability is developed by combining the excellent scattering efficiency of the hexagonal boron nitride (h-BN) nanoplates with the high infrared emissivity and ideal triboelectric negative property of the Ecoflex matrix. Strikingly, sufficiently high solar reflectance (0.92) and ideal emissivity (0.97) endow the Ecoflex@h-BN film with subambient cooling effect of ≈9.5 °C at midday during the continuous outdoor measurements. In addition, the PDRC Ecoflex@h-BN film-based triboelectric nanogenerator (PDRC-TENG) exhibits a maximum peak power density of 0.5 W m-2 . By reasonable structure design, the PDRC-TENG accomplishes effective wind energy harvesting and can successfully drive the electronic device. Meanwhile, an on-skin PDRC-TENG is fabricated to harvest human motion energy and monitor moving states. This research provides a novel design of a multifunctional PDRC photonic film, and offers a versatile strategy to realize concurrent PDRC and sustainable energies harvesting.

5.
Opt Express ; 31(25): 42165-42175, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087596

RESUMEN

Free space optical (FSO) communication has gained widespread attention due to its advantages, including high confidentiality, high communication capacity, and no limitation of spectrum. One of the great challenges in FSO communication is the transmission performance degradation in atmospheric turbulence channel due to wavefront distortion and scintillation. Here, we proposed and experimentally demonstrated a 120 Gbit/s vector beam multiplexed coherent optical communication system with turbulence-resilient capacity. Four multiplexed vector beams, each carrying a 30 Gbit/s quadrature phase-shift keying signal, propagate through different turbulence conditions. The influence of turbulence channel on the vector beam impairments is experimentally investigated. Under the weaker turbulence conditions, the system bit error rates are below the forward error correction threshold of 3.8 × 10-3. In comparison with the Gaussian mode, the communication interruption probability of the vector beams system decreases from 36% to 12%-18% under stronger turbulence conditions.

6.
Artículo en Chino | MEDLINE | ID: mdl-37253526

RESUMEN

Objective:To investigate the effectiveness of nasal endoscopic anterior lacrimal recess approach combined with temporary fenestration of the nasal septum in resecting recurrent nasal inverted papilloma. Methods:Patients with recurrent nasal inverted papilloma who underwent reoperation in our hospital during the past 2 years were included . The nasal septum may hinder full access to and effective treatment of the lesions at the anterior and medial wall of the maxillary sinus by endoscope, aspirator and surgical instrument in the narrow aperture of the prelacrimal recess, although these lesions could be observed by 70° nasal endoscope. Results:The nasal septum is temporarily opened on the basis of the prelacrimal recess approach, and the nasal endoscope and instrument was introduced through trans-septal window, so as to provide a better view of the operative field and the angular range of the instrument's movement. Conclusion:The recurrent nasal inverted papilloma could be successfully managed by re-endoscopic anterior lacrimal recess approach combined with temporary fenestration of the nasal septum, and no recurrence was observed during the 2-year follow-up. This surgical approach is recommended for the inverted papilla which originates from the anterior medial wall of the maxillary sinus, as the tumor can be removed completely using this surgical approach.


Asunto(s)
Aparato Lagrimal , Papiloma Invertido , Humanos , Papiloma Invertido/cirugía , Papiloma Invertido/patología , Endoscopía , Seno Maxilar/cirugía , Seno Maxilar/patología , Aparato Lagrimal/cirugía , Resultado del Tratamiento , Estudios Retrospectivos
7.
Ultrason Sonochem ; 97: 106458, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257209

RESUMEN

This study aimed to investigate the effects of high-intensity ultrasound treatment on the functional properties and emulsion stability of Neosalanx taihuensis myofibrillar protein (MP). The results showed that the carbonyl groups, emulsification properties, intrinsic fluorescence intensity, and surface hydrophobicity of the ultrasound treated MP solution were increased compared to the MP without ultrasound treatment. The results of secondary structure showed that the ultrasound treatment could cause a huge increase of ß-sheet and a decline of α-helix of MP, indicating that ultrasound induced molecular unfolding and stretching. Moreover, ultrasound reduced the content of total sulfhydryl and led to a certain degree of MP cross-linking. The microscopic morphology of MP emulsion indicated that the emulsion droplet decreased with the increase of ultrasound power. In addition, ultrasound could also increase the storage modulus of the MP emulsion. The results for the lipid oxidation products indicated that ultrasound significantly improved the oxidative stability of N. taihuensis MP emulsions. This study offers an important reference theoretically for the ultrasound modification of aquatic proteins and the future development of N. taihuensis deep-processed products represented by surimi.


Asunto(s)
Proteínas Musculares , Emulsiones/química , Proteínas Musculares/química , Oxidación-Reducción , Interacciones Hidrofóbicas e Hidrofílicas
8.
Nat Commun ; 14(1): 1946, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029133

RESUMEN

Optical encryption is a promising approach to protecting secret information owing to the advantages of low-power consumption, parallel, high-speed, and multi-dimensional processing capabilities. Nevertheless, conventional strategies generally suffer from bulky system volume, relatively low security level, redundant measurement, and/or requirement of digital decryption algorithms. Here, we propose a general optical security strategy dubbed meta-optics-empowered vector visual cryptography, which fully exploits the abundant degrees of freedom of light as well as the spatial dislocation as key parameters, significantly upgrading the security level. We also demonstrate a decryption meta-camera that can implement the reversal coding procedure for real-time imaging display of hidden information, avoiding redundant measurement and digital post-processing. Our strategy features the merits of a compact footprint, high security, and rapid decryption, which may open an avenue for optical information security and anti-counterfeiting.

9.
Foods ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37048380

RESUMEN

In this study, a typical tea polyphenol epicatechin (EC) was investigated for its impact on the oxidative stability of whey protein isolate (WPI) in a fish oil-fortified emulsion. The oil-in-water emulsion system consisted of fish oil (1%, w/w), WPI (6 mg/mL), and EC (0.1, 1, and 2 mM), and the oxidation reaction was catalyzed by Fenton's reagent at 25 °C for 24 h. The results showed EC exhibited a dose-dependent activity in the reduction of lipid oxidation (TBARS) and protein carbonylation. A Western blot analysis demonstrated that protein lipoxidation was inhibited by EC via interrupting the covalent binding of lipid secondary oxidation products, MDA, onto proteins. In addition, protein lipoxidation induced a loss of tryptophan fluorescence, and protein hydrolysis was partially recovered by EC. The findings of this study provide an in-depth understanding of the performance of phenolic antioxidants in relieving lipid oxidation and subsequent protein lipoxidation in oil-containing dairy products.

10.
Nat Commun ; 14(1): 2342, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095176

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor outcome and lacks of approved targeted therapy. Overexpression of epidermal growth factor receptor (EGFR) is found in more than 50% TNBC and is suggested as a driving force in progression of TNBC; however, targeting EGFR using antibodies to prevent its dimerization and activation shows no significant benefits for TNBC patients. Here we report that EGFR monomer may activate signal transducer activator of transcription-3 (STAT3) in the absence of transmembrane protein TMEM25, whose expression is frequently decreased in human TNBC. Deficiency of TMEM25 allows EGFR monomer to phosphorylate STAT3 independent of ligand binding, and thus enhances basal STAT3 activation to promote TNBC progression in female mice. Moreover, supplying TMEM25 by adeno-associated virus strongly suppresses STAT3 activation and TNBC progression. Hence, our study reveals a role of monomeric-EGFR/STAT3 signaling pathway in TNBC progression and points out a potential targeted therapy for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Animales , Ratones , Neoplasias de la Mama Triple Negativas/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo , Proliferación Celular/fisiología
11.
Opt Lett ; 48(6): 1470-1473, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946955

RESUMEN

For the first time, to the best of our knowledge, we experimentally demonstrate a high-speed free-space secure optical communication system based on all-optical chaos modulation. The effect of atmospheric turbulence on optical chaos synchronization is experimentally investigated via a hot air convection atmospheric turbulence simulator. It is shown that, even under moderately strong turbulent conditions, high-quality chaos synchronization could be obtained by increasing the transmission power. Moreover, a secure encryption transmission experiment using a high bias current induced chaotic carrier for 8-Gbit/s on-off-keying data over a ∼10-m free-space optical link is successfully demonstrated, with a bit-error rate below the FEC threshold of 3.8 × 10-3. This work favorably shows the feasibility of optical chaotic encryption for the free-space optical transmission system.

12.
Opt Express ; 30(15): 26664-26675, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236854

RESUMEN

Spatial wavefront control and high-Q spectral filtering are both of great importance for various optical applications, such as eye-tracking for eyewear, planar optical modulators, and optical sensing. However, it is a great challenge to simultaneously satisfy these two functionalities in a metasurface due to the inevitable conflicts of local and non-local modes, where local modes of a single meta-atom manipulate the wavefront in a broadband range, while non-local collective modes of extended meta-atoms only support high-Q resonances at certain characteristic wavelengths. Here, we demonstrate a low-contrast dielectric non-local meta-grating that provides both spatial and spectral control of light in a broadband range of 700-1600 nm, offering elaborate wavefront shaping only for narrow-band resonances. Such counterintuitive functionality is supported by spatially tailored dark modes (quasi-bound states in the continuum) encoding with spatially varying geometric phases, while low-contrast dielectric provides broadband non-resonant transmission. Moreover, a broadband transparent polarization meta-grating with two resonance wavelengths is presented. Non-local geometric-phase metasurfaces open an exciting avenue for wavefront shaping and spectral manipulation, and may have potential applications in sensing, lasing, and spectral filtering.

13.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234521

RESUMEN

Monolithic integrated mode converters with high integration are essential to photonic integrated circuits (PICs), and they are widely used in next-generation optical communications and complex quantum systems. It is expected that PICs will become more miniaturized, multifunctional, and intelligent with the development of micro/nano-technology. The increase in design space makes it difficult to realize high-performance device design based on traditional parameter sweeping or heuristic design, especially in the optimal design of reconfigurable PIC devices. Combining the mode coupling theory and adjoint calculation method, we proposed a design method for a switchable mode converter. The device could realize the transmission of TE0 mode and the conversion from TE0 to TE1 mode with a footprint of 0.9 × 7.5 µm2 based on the phase change materials (PCMs). We also found that the mode purity could reach 78.2% in both states at the working wavelength of 1.55 µm. The designed method will provide a new impetus for programmable photonic integrated devices and find broad application prospects in communication, optical neural networks, and sensing.

14.
J Phys Condens Matter ; 34(38)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35820414

RESUMEN

Catenary optics is an emerging direction of subwavelength optics, which is indispensable in describing the electric fields and dispersion property of coupled metallic subwavelength structures, and designing broadband high-efficiency geometric-phase metasurfaces. It involves catenary optical fields and catenary structures, in which both ordinary and equal-length catenary functions play important roles. In recent years, catenary optics has realized a variety of exotic phenomena and optical applications, including broadband photonic spin-Hall effect, super-resolution lithography, broadband absorbers, and extreme-angle imaging. Here, we discuss developments of catenary optics, including a brief history, physical concept and properties, applications, and future perspectives.

15.
Adv Mater ; 34(12): e2108709, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34997941

RESUMEN

Recently, disordered metasurfaces have attracted considerable interest due to their potential applications in imaging, holography, and wavefront shaping. However, how to emerge long-range ordered phase distribution in disordered metasurfaces remains an outstanding problem. Here, a general framework is proposed to generate a spatially homogeneous in-plane phase distribution from a disordered metasurface, by engineering disorder parameters together with topology optimization. As a proof-of-concept demonstration, an all-dielectric disordered supercell metasurface with relatively homogeneous in-plane phase fluctuation is designed by disorder parameter engineering, manifesting as polarization conversion-dependent random scattering or unidirectional transmission. Then, a topology optimization approach is utilized to overcome the lattice coupling effect and to further improve the homogeneity of complex electric field fluctuation. In comparison with the initial supercell metasurface, both the phase fluctuation range and the relative efficiency of the topology-optimized freeform metasurface are significantly improved, leading to a long-range ordered electric field distribution. Moreover, three experimental realizations are performed, all of which agree well with the theoretical results. This methodology may inspire more exotic optical phenomena and find more promising applications in disordered metasurfaces and disordered optics.

16.
J Sci Food Agric ; 102(4): 1488-1497, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34402073

RESUMEN

BACKGROUND: Acerola cherry is a famous functional fruit containing plentiful antioxidants and other nutrients. However, studies on the variations among nutrients during the ripening process of acerola fruit are scare. RESULTS: Comparative metabolomic and transcriptomic analyses were performed and identified 31 331 unigenes and 1896 annotated metabolite features in acerola cherry fruit. K Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that several antioxidant and nutrient-related metabolic pathways, such as the flavonoids, vitamins, carotenoids, amino acids, and fatty acids metabolic pathways, were significantly changed during the ripening process. The metabolites related to the vitamin, carotenoid, and fatty acid metabolic pathways were downregulated during the ripening process. Several flavonoid biosynthesis-related genes (including dihydroflavonol 4-reductase, chalcone synthase, flavanone 3-hydroxylase, and anthocyanidin synthase), were significantly upregulated, suggesting their essential functions in the accumulation of flavonoids in mature fruit. CONCLUSION: Most of the vitamin and carotenoid metabolism-related metabolites significantly accumulated in immature fruit, suggesting that immature acerola fruit is a good material for the extraction of vitamins and carotenoids. For macronutrients, most of the amino acids accumulated in mature fruit and most of the fatty acids greatly accumulated in immature fruit. Our data revealed the differential accumulation of antioxidants and nutrients during the ripening process of acerola cherry fruit. © 2021 Society of Chemical Industry.


Asunto(s)
Malpighiaceae , Antioxidantes , Ácido Ascórbico , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Malpighiaceae/genética , Transcriptoma
17.
Adv Sci (Weinh) ; 9(9): e2103429, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34970845

RESUMEN

Low symmetric two dimensional (2D) semiconductors are of great significance for their potential applications in polarization-sensitive photodetection and quantum information devices. However, their real applications are limited by their photo-detecting wavelength ranges, which are restricted by their fundamental optical bandgaps. Recently, intercalation has been demonstrated to be a powerful strategy to modulate the optical bandgaps of 2D semiconductors. Here, the authors report the self-driven oxygen (O2 ) intercalation induced bandgap reduction from 1.75 to 1.19 eV in gallium telluride (GaTe) in air. This bandgap shrinkage provides the long-wavelength detection threshold above ≈1100 nm for O2 intercalated GaTe (referred to as GaTeO2 ), well beyond the cut-off wavelength at ≈708 nm for pristine GaTe. The GaTeO2 photodetectors have a high photoresponsivity, and highly anisotropic photodetection behavior to even sub-waveband radiation. The dichroic ratio (Imax /Imin ) of photocurrent is about 1.39 and 2.9 for 600 nm and 1100 nm, respectively. This findings demonstrates a broadband photodetector utilizing GaTe after breaking through its bandgap limitation by self-driven O2 intercalation in air and further reveal its photoconductivity anisotropic nature. This provides design strategies of 2D materials-based high-performance broadband photodetectors for the exploration of polarized state information.

18.
Molecules ; 26(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34443454

RESUMEN

Two new abietane diterpenoids (1,2), along with five known diterpenoids (3-7), were first isolated and purified from the stems of Clerodendrum bracteatum. The structures of the new compounds were established by extensive analysis of mass spectrometric and 1-D, 2-D NMR spectroscopic data. Their antioxidant activities were determined on DPPH radical scavenging and ABTS. The in vitro cytotoxic activities of the compounds were evaluated against the HL-60 and A549 cell lines by the MTT method.


Asunto(s)
Abietanos/aislamiento & purificación , Abietanos/farmacología , Antioxidantes/farmacología , Clerodendrum/química , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Células A549 , Abietanos/química , Muerte Celular/efectos de los fármacos , Diterpenos/química , Células HL-60 , Humanos , Espectroscopía de Resonancia Magnética
19.
Materials (Basel) ; 14(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201068

RESUMEN

Current development of high-performance fiber-reinforced cementitious composites (HPFRCC) mainly relies on intensive experiments. The main purpose of this study is to develop a machine learning method for effective and efficient discovery and development of HPFRCC. Specifically, this research develops machine learning models to predict the mechanical properties of HPFRCC through innovative incorporation of micromechanics, aiming to increase the prediction accuracy and generalization performance by enriching and improving the datasets through data cleaning, principal component analysis (PCA), and K-fold cross-validation. This study considers a total of 14 different mix design variables and predicts the ductility of HPFRCC for the first time, in addition to the compressive and tensile strengths. Different types of machine learning methods are investigated and compared, including artificial neural network (ANN), support vector regression (SVR), classification and regression tree (CART), and extreme gradient boosting tree (XGBoost). The results show that the developed machine learning models can reasonably predict the concerned mechanical properties and can be applied to perform parametric studies for the effects of different mix design variables on the mechanical properties. This study is expected to greatly promote efficient discovery and development of HPFRCC.

20.
Food Chem ; 365: 130525, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265642

RESUMEN

In this study, the impact of resveratrol (RES) on co-oxidation of lipid and protein in a fish oil-fortified whey protein isolate (WPI) emulsion was investigated. Oil-in-water (O/W) emulsions containing 1% fish oil, 6 mg/mL of WPI and RES (0.08 ~ 2 mM) were oxidatively stressed using a Fenton system at 25 °C for 24 h. The incorporation of RES significantly suppressed lipid oxidation (TBARS) and protein carbonylation. Oxidation-induced decrease on protein sulfhydryl content and surface hydrophobicity were partially attenuated by RES, but protein tryptophan fluorescence was further decreased with the increased concentration of RES. Visualization of protein patterns and MDA-bound protein suggested that RES is capable of inhibiting protein modification induced by secondary products of lipid oxidation. Significant decrease in protein digestibility under oxidizing condition was also mitigated by RES. Our study contributes to the exploration of complicated interactions between oxidized lipids and proteins when phenolic compounds are present.


Asunto(s)
Aceites de Pescado , Agua , Emulsiones , Oxidación-Reducción , Resveratrol , Proteína de Suero de Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...