RESUMEN
OBJECTIVE: An elevated red cell distribution width has been recognized as a predictor of various cardiovascular diseases. Slow coronary flow syndrome is an important angiographic clinical entity with an unknown etiology. This study aimed to examine the relationship between red cell distribution width and the presence of slow coronary flow syndrome. METHODS: In total, 185 patients with slow coronary flow syndrome and 183 age- and gender-matched subjects with normal coronary flow (controls) were prospectively enrolled in this study. Red cell distribution width and C-reactive protein were measured upon admission, and the results were compared between the patients with slow coronary flow syndrome and normal controls. RESULTS: Red cell distribution width levels were significantly higher in the patients with slow coronary flow syndrome than the normal controls. Moreover, the data showed that the plasma C-reactive protein levels were also higher in the patients with slow coronary flow syndrome than in the normal controls. In addition, a multivariate analysis indicated that C-reactive protein and red cell distribution width were the independent variables most strongly associated with slow coronary flow syndrome. Finally, the red cell distribution width was positively correlated with C-reactive protein and mean thrombosis in the myocardial infarction frame counts of the patients with slow coronary flow syndrome. CONCLUSION: The data demonstrated that red cell distribution width levels are significantly higher and strongly positively correlated with both C-reactive protein and thrombosis in the myocardial infarction frame counts of patients with slow coronary flow syndrome. These findings suggest that red cell distribution width may be a useful marker for patients with slow coronary flow syndrome.
Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , Circulación Coronaria/fisiología , Índices de Eritrocitos , Adulto , Biomarcadores/sangre , Velocidad del Flujo Sanguíneo/fisiología , Proteína C-Reactiva/análisis , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Angiografía Coronaria , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , SíndromeRESUMEN
OBJECTIVE: An elevated red cell distribution width has been recognized as a predictor of various cardiovascular diseases. Slow coronary flow syndrome is an important angiographic clinical entity with an unknown etiology. This study aimed to examine the relationship between red cell distribution width and the presence of slow coronary flow syndrome. METHODS: In total, 185 patients with slow coronary flow syndrome and 183 age- and gender-matched subjects with normal coronary flow (controls) were prospectively enrolled in this study. Red cell distribution width and C-reactive protein were measured upon admission, and the results were compared between the patients with slow coronary flow syndrome and normal controls. RESULTS: Red cell distribution width levels were significantly higher in the patients with slow coronary flow syndrome than the normal controls. Moreover, the data showed that the plasma C-reactive protein levels were also higher in the patients with slow coronary flow syndrome than in the normal controls. In addition, a multivariate analysis indicated that C-reactive protein and red cell distribution width were the independent variables most strongly associated with slow coronary flow syndrome. Finally, the red cell distribution width was positively correlated with C-reactive protein and mean thrombosis in the myocardial infarction frame counts of the patients with slow coronary flow syndrome. CONCLUSION: The data demonstrated that red cell distribution width levels are significantly higher and strongly positively correlated with both C-reactive protein and thrombosis in the myocardial infarction frame counts of patients with slow coronary flow syndrome. These findings suggest that red cell distribution width may be a useful marker for patients with slow coronary flow syndrome. .
Asunto(s)
Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/sangre , Circulación Coronaria/fisiología , Índices de Eritrocitos , Biomarcadores/sangre , Velocidad del Flujo Sanguíneo/fisiología , Proteína C-Reactiva/análisis , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Angiografía Coronaria , Estudios Prospectivos , SíndromeRESUMEN
The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.
Asunto(s)
Ventrículos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Troponina I/metabolismo , Animales , Inmunoprecipitación , Miocitos Cardíacos/química , Miofibrillas , Fosforilación , Plásmidos , RatasRESUMEN
The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.