Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Crit Rev Oncol Hematol ; 198: 104357, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38614270

RESUMEN

BACKGROUND: Whether PD-L1 testing is needed to identify patients receiving PD-1/PD-L1 inhibitors is an area of debate. METHODS: PubMed and Embase were searched for phase III randomized clinical trials. We assessed the heterogeneity of overall survival (OS) between patients with high and low PD-L1 expression using an interaction test. RESULTS: Seventy studies representing 44791 patients were included. Both the CPS and TPS can predict better survival from anti-PD-1/PD-L1 therapy in patients with high PD-L1 expression. However, only CPS 1 has the ability to select patients who are unlikely to respond to anti-PD-1/PD-L1 therapy, while an OS advantage can be obtained from PD-1/PD-L1 inhibitors both in patients with high and low PD-L1 expression defined by CPS 5, CPS 10 and TPS. CONCLUSION: CPS 1 is recommended to select patients with the likelihood of benefiting from PD-1/PD-L1 inhibitors while excluding patients who may not respond.

2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660875

RESUMEN

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Asunto(s)
Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Animales , Ratones , Femenino , Células Madre Mesenquimatosas/citología , Células de la Médula Ósea/citología , Microambiente Celular , Médula Ósea , Ratas
3.
Angew Chem Int Ed Engl ; 63(14): e202319216, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337143

RESUMEN

The synthesis of hydrogen peroxide through artificial photosynthesis is a green and promising technology with advantages in sustainability, economy and safety. However, superoxide radical (⋅O2 -), an important intermediate in photocatalytic oxygen reduction to H2O2 production, has strong oxidizing properties that potentially destabilize the catalyst. Therefore, avoiding the accumulation of ⋅O2 - for its rapid conversion to H2O2 is of paramount significance in improving catalyst stability and H2O2 yield. In this work, a strategy was developed to utilize protonated groups for the rapid depletion of converted ⋅O2 -, thereby the efficiency of photocatalytic synthesis of H2O2 from CN was successfully enhanced by 47-fold. The experimental findings demonstrated that polydopamine not only improved carrier separation efficiency, and more importantly, provided the adsorption reduction active site for ⋅O2 - for efficient H2O2 production. This work offers a versatile approach for synthesizing efficient and stable photocatalysts.

4.
Can Assoc Radiol J ; : 8465371241231573, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389194

RESUMEN

Purpose: To determine whether multiparametric MRI-based spatial habitats and fractal analysis can help distinguish triple-negative breast cancer (TNBC) from non-TNBC. Method: Multiparametric DWI and DCE-MRI at 3T were obtained from 142 biopsy- and surgery-proven breast cancer with 148 breast lesions (TNBC = 26 and non-TNBC = 122). The contrast-enhancing lesions were divided into 3 spatial habitats based on perfusion and diffusion patterns using K-means clustering. The fractal dimension (FD) of the tumour subregions was calculated. The accuracy of the habitat segmentation was measured using the Dice index. Inter- and intra-reader reliability were evaluated with the intraclass correlation coefficient (ICC). The ability to predict TNBC status was assessed using the receiver operating characteristic curve. Results: The Dice index for the whole tumour was 0.81 for inter-reader and 0.88 for intra-reader reliability. The inter- and intra-reader reliability were excellent for all 3 tumour habitats and fractal features (ICC > 0.9). TNBC had a lower hypervascular cellular habitat and higher FD 1 compared to non-TNBC (all P < .001). Multivariate analysis confirmed that hypervascular cellular habitat (OR = 0.88) and FD 1 (OR = 1.35) were independently associated with TNBC (all P < .001) after adjusting for rim enhancement, axillary lymph nodes status, and histological grade. The diagnostic model combining hypervascular cellular habitat and FD 1 showed excellent discriminatory ability for TNBC, with an AUC of 0.951 and an accuracy of 91.9%. Conclusions: The fraction of hypervascular cellular habitat and its FD may serve as useful imaging biomarkers for predicting TNBC status.

5.
J Nutr Biochem ; 126: 109584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38242178

RESUMEN

Hyperlipidemia (HLP) is a prevalent metabolic disorder and a significant risk factor for cardiovascular disease. According to recent discoveries, super-enhancers (SEs) play a role in the increased expression of genes that encode important regulators of both cellular identity and the progression of diseases. However, the underlying function of SEs in the development of HLP is still unknown. We performed an integrative analysis of data on H3K27ac ChIP-seq and RNA sequencing obtained from liver tissues of mice under a low-fat diet (LFD) and high-fat diet (HFD) from GEO database. The rank ordering of super enhancers algorithm was employed for the computation and identification of SEs. A total of 1,877 and 1,847 SEs were identified in the LFD and HFD groups, respectively. The SE inhibitor JQ1 was able to potently reverse lipid deposition and the increased intracellular triglyceride and total cholesterol induced by oleic acid, indicating that SEs are involved in regulating lipid accumulation. Two hundred seventy-eight were considered as HFD-specific SEs (HSEs). GO and KEGG pathway enrichment analysis of the upregulated HSEs-associated genes revealed that they were mainly involved in lipid metabolic pathway. Four hub genes, namely Cd36, Pex11a, Ech1, and Cidec, were identified in the HSEs-associated protein-protein interaction network, and validated with two other datasets. Finally, we constructed a HSEs-specific regulatory network with Cidec and Cd36 as the core through the prediction and verification of transcription factors. Our study constructed a HSEs-associated regulatory network in the pathogenesis of HLP, providing new ideas for the underlying mechanisms and therapeutic targets of HLP.


Asunto(s)
Hiperlipidemias , Ratones , Animales , Hiperlipidemias/genética , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Triglicéridos/metabolismo , Factores de Transcripción/metabolismo
6.
Sci Total Environ ; 912: 168313, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38007128

RESUMEN

Wastewater treatment plants (WWTPs) pose a potential threat to the environment because of the accumulation of antibiotic resistance genes (ARGs) and microplastics (MPs). However, the interactions between ARGs and MPs, which have both indirect and direct effects on ARG dissemination in WWTPs, remain unclear. In this study, spatiotemporal variations in different types of MPs, ten ARGs (sul1, sul2, tetA, tetO, tetM, tetX, tetW, qnrS, ermB, and ermC), class 1 integron integrase (intI1) and transposon Tn916/1545 in three typical WWTPs were characterized. Sul1, tetO, and sul2 were the predominant ARGs in the targeted WWTPs, whereas the intI1 and transposon Tn916/1545 were positively correlated with most of the targeted ARGs. Saccharimonadales (4.15 %), Trichococcus (2.60 %), Nitrospira (1.96 %), Candidatus amarolinea (1.79 %), and SC-I-84 (belonging to phylum Proteobacteria) (1.78 %) were the dominant genera. Network and redundancy analyses showed that Trichococcus, Faecalibacterium, Arcobacter, and Prevotella copri were potential hosts of ARGs, whereas Candidatus campbellbacteria and Candidatus kaiserbacteria were negatively correlated with ARGs. The potential hosts of ARGs had a strong positive correlation with polyethylene terephthalate, silicone resin, and fluor rubber and a negative correlation with polyurethane. Candidatus campbellbacteria and Candidatus kaiserbacteria were positively correlated with polyurethane, whereas potential hosts of ARGs were positively correlated with polypropylene and fluor rubber. Structural equation modeling highlighted that intI1, transposon Tn916/1545 and microbial communities, particularly microbial diversity, dominated the dissemination of ARGs, whereas MPs had a significant positive correlation with microbial abundance. Our study deepens the understanding of the relationships between ARGs and MPs in WWTPs, which will be helpful in designing strategies for inhibiting ARG hosts in WWTPs.


Asunto(s)
Aguas Residuales , Purificación del Agua , Genes Bacterianos , Microplásticos , Plásticos , Antibacterianos , Poliuretanos , Goma , Farmacorresistencia Microbiana/genética , Interacciones Microbianas
7.
Aging Cell ; 23(3): e14063, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38098220

RESUMEN

Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.


Asunto(s)
Cardiopatías , MicroARNs , Ratones , Humanos , Animales , Anciano , NAD/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Senescencia Celular/genética , Ratones Transgénicos , Poli(ADP-Ribosa) Polimerasa-1/genética
8.
Int J Gen Med ; 16: 5501-5513, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034900

RESUMEN

Introduction: Erectile dysfunction (ED) is a prevalent condition in urology, primarily managed with PDE5 inhibitors (PDE5Is). However, approximately 20% of patients do not experience improvement in overall sexual satisfaction (OS) after taking PDE5Is. Among these, traditional Chinese medicine (TCM) has emerged as a complementary approach, with formulas like Hongjing I granules (HJIG) showing promise in preliminary studies. This study aims to rigorously evaluate the effectiveness and safety of HJIG in mild to moderate ED cases, assessing improvement in both sexual function and TCM pattern alignment. Methods: This study is a randomized, double-blind, placebo-controlled multicentre trial. Recruitment will be conducted from patients who have a strong willingness to try using only traditional Chinese medicine treatment (This is very common in traditional Chinese medicine hospitals.). A total of 100 patients diagnosed with mild to moderate ED caused by qi deficiency and blood stasis will be recruited and randomly assigned to receive one of two treatments: HJIG (N = 50) or placebo (N = 50). Patients will receive 8 weeks of treatment and a 16-week follow-up starting from the fourth week of treatment. Outcome measures, including the International Index of Erectile Function-Erectile Function domain (IIEF-EF) score, Sexual Encounter Profile (SEP), and Traditional Chinese Medicine symptom score, will be evaluated. Discussion: The expected outcome of this trial is that the use of the herbal formula HIJG alone can improve overall sexual satisfaction (OS) in patients with mild to moderate ED, while also improving their traditional Chinese medicine symptom scores. This will provide evidence-based support for the use of Chinese medicine in the treatment of ED in China. Trial Registration: Chinese Clinical Trial Registry, ChiCTR2000041127, Registered on 19 December 2020, https://www.chictr.org.cn/showproj.html?proj=46469. Trial Status: Recruitment began in March 2021, therefore 80 patients have been recruited. It is expected to finish recruiting in December 2023.

9.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834111

RESUMEN

Lung adenocarcinoma (LUAD) is a prevalent type of thoracic cancer with a poor prognosis and high mortality rate. However, the exact pathogenesis of this cancer is still not fully understood. One potential factor that can contribute to the development of lung adenocarcinoma is DNA methylation, which can cause changes in chromosome structure and potentially lead to the formation of tumors. The baculoviral IAP repeat containing the 5 (BIRC5) gene encodes the Survivin protein, which is a multifunctional gene involved in cell proliferation, migration, and invasion of tumor cells. This gene is elevated in various solid tumors, but its specific role and mechanism in lung adenocarcinoma are not well-known. To identify the potential biomarkers associated with lung adenocarcinoma, we screened the methylation-regulated differentially expressed genes (MeDEGs) of LUAD via bioinformatics analysis. Gene ontology (GO) process and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to investigate the biological function and pathway of MeDEGs. A protein-protein interaction (PPI) network was employed to explore the key module and screen hub genes. We screened out eight hub genes whose products are aberrantly expressed, and whose DNA methylation modification level is significantly changed in lung adenocarcinoma. BIRC5 is a bona fide marker which was remarkably up-regulated in tumor tissues. Flow cytometry analysis, lactate dehydrogenase release (LDH) assay and Micro-PET imaging were performed in A549 cells and a mouse xenograft tumor to explore the function of BIRC5 in cell death of lung adenocarcinoma. We found that BIRC5 was up-regulated and related to a high mortality rate in lung adenocarcinoma patients. Mechanically, the knockdown of BIRC5 inhibited the proliferation of A549 cells and induced pyroptosis via caspase3/GSDME signaling. Our findings have unraveled that BIRC5 holds promise as a novel biomarker and therapeutic target for lung adenocarcinoma. Additionally, we have discovered a novel pathway in which BIRC5 inhibition can induce pyroptosis through the caspase3-GSDME pathway in lung adenocarcinoma cells.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Animales , Ratones , Piroptosis , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Mapas de Interacción de Proteínas/genética , Transducción de Señal , Neoplasias Pulmonares/metabolismo , Regulación Neoplásica de la Expresión Génica , Survivin/genética , Survivin/metabolismo
10.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37765083

RESUMEN

Diabetic cardiomyopathy (DCM) is widely recognized as a major contributing factor to the development of heart failure in patients with diabetes. Previous studies have demonstrated the potential benefits of traditional herbal medicine for alleviating the symptoms of cardiomyopathy. We have chemically designed and synthesized a novel compound called aloe-emodin derivative (AED), which belongs to the aloe-emodin (AE) family of compounds. AED was formed by covalent binding of monomethyl succinate to the anthraquinone mother nucleus of AE using chemical synthesis techniques. The purpose of this study was to investigate the effects and mechanisms of AED in treating DCM. We induced type 2 diabetes in Sprague-Dawley (SD) rats by administering a high-fat diet and streptozotocin (STZ) injections. The rats were randomly divided into six groups: control, DCM, AED low concentration (50 mg/kg/day), AED high concentration (100 mg/kg/day), AE (100 mg/kg/day), and positive control (glyburide, 2 mg/kg/day) groups. There were eight rats in each group. The rats that attained fasting blood glucose of ˃16.7 mmol/L were considered successful models. We observed significant improvements in cardiac function in the DCM rats with both AED and AE following four weeks of intragastric treatment. However, AED had a more pronounced therapeutic effect on DCM compared to AE. AED exhibited an inhibitory effect on the inflammatory response in the hearts of DCM rats and high-glucose-treated H9C2 cells by suppressing the pyroptosis pathway mediated by the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain 3 (NLRP3) inflammasome. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes showed a significant enrichment in the NOD-like receptor signaling pathway compared to the high-glucose group. Furthermore, overexpression of NLRP3 effectively reversed the anti-pyroptosis effects of AED in high-glucose-treated H9C2 cells. This study is the first to demonstrate that AED possesses the ability to inhibit myocardial pyroptosis in DCM. Targeting the pyroptosis pathway mediated by the NLRP3 inflammasome could provide a promising therapeutic strategy to enhance our understanding and treatment of DCM.

11.
Natl Sci Rev ; 10(9): nwad207, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37601241

RESUMEN

The unsuitable disposal of plastic wastes has caused serious environmental pollution, and finding a green manner to address this problem has aroused wide concern. Plastic wastes, especially polyolefin wastes, are rich in carbon and hydrogen, and chemical recycling shows distinct advantages in their conversion into olefins and realizes a closed-loop cycling of plastic wastes. Plastic wastes should be labeled before disposal. The necessity for, and methods of, pretreatment are introduced in this paper and the whole recycling process of polyolefin wastes is also summarized. As the core technology pyrolysis, including thermal, catalytic and solvolysis processes, is introduced in detail due to its potential for future development. We also briefly describe the feasible strategies of pyrolytic oil refining and life cycle assessment of the chemical recycling process. In addition, suggestions and perspectives concerning the industrial improvement of polyolefin chemical recycling are proposed.

12.
Sci Total Environ ; 897: 165416, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433337

RESUMEN

Recovery of phosphorus (P) via vivianite crystallization is an effective strategy to recycle resources from the anaerobic fermentation supernatant. However, the presence of different components in the anaerobic fermentation supernatant (e.g., polysaccharides and proteins) might alter conditions for optimal growth of vivianite crystals, resulting in distinct vivianite characteristics. In the present study, the effect of different components on vivianite crystallization was explored. Then, the reaction parameters (pH, Fe/P, and stirring speed) for P recovery from synthetic anaerobic fermentation supernatant as vivianite were optimized using response surface methodology, and the relationship between crystal properties and supersaturation was elucidated using a thermodynamic equilibrium model. The optimized values for pH, Fe/P, and stirring speed were found to be 7.8, 1.74, and 500 rpm respectively, resulting in 90.54 % P recovery efficiency. Moreover, the variation of reaction parameters did not change the crystalline structure of the recovered vivianite but influenced its morphology, size, and purity. Thermodynamic analysis suggested the saturation index (SI) of vivianite increased with increasing pH and Fe/P ratio, leading to a facilitative effect on vivianite crystallization. However, when the SI was >11, homogenous nucleation occurred so that the nucleation rate was much higher than the crystal growth rate, causing a smaller crystal size. The findings presented herein will be highly valued for the future large-scale application of the vivianite crystallization process for wastewater treatment.


Asunto(s)
Fósforo , Eliminación de Residuos Líquidos , Fermentación , Cristalización , Anaerobiosis , Aguas del Alcantarillado , Fosfatos , Compuestos Ferrosos
13.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3498-3507, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475002

RESUMEN

This study compared the effects of Curcuma longa before and after processing with vinegar on the rat model of dysmenorrhea with the syndrome of liver depression and Qi stagnation to reveal the mechanism of vinegar processing in improving the role of C. longa in soothing liver and relieving pain. The rat model of dysmenorrhea with the syndrome of liver depression and Qi stagnation was established according to the Preparation of the Animal Model of Dysmenorrhea(Draft) and the chronic unpredictable stress me-thod. The changes in the body weight, organ indexes, writhing latency, writhing score, and serum levels of six liver function indicators, sex hormones, pain factors, and blood rheological indicators were measured to evaluate the efficacy of C. longa processed with vinegar or not in treating dysmenorrhea in the rats with syndrome of liver depression and qi stagnation. Compared with the model group, the C. longa group(processed with vinegar or not) showed slow weight loss, increase in writhing latency, and decrease in writhing response(P<0.05). The inhibition rates on writhing in raw C. longa, vinegar-processed C. longa, and positive groups were 33.780%, 64.611%, and 62.466%, respectively. The significantly higher inhibition rate of the vinegar processing group indicated that vinegar-processed C. longa demonstrated more significant therapeutic effect. The vinegar-processed C. longa group showed lower levels of alanine aminotransferase(ALT), alkaline phosphatase(ALP), aspartate aminotransferase(AST), direct bilirubin(DBIL), and total bilirubin(TBIL) and higher level of albumin(ALB)(P<0.05), which indicated that vinegar processing enhanced the therapeutic effect of C. longa on liver injury. The serum levels of estradiol(E_2) and oxytocin(OT) were lower in the vinegar-processed C. longa group(P<0.05), indicating that the vinegar-processed C. longa could regulate the sex hormone levels, reduce the activity of uterine smooth muscle and contraction of uterus, and alleviate the symptoms of dysmenorrhea in rats. Moreover, the vinegar-processed C. longa group showed lower interleukin-6(IL-6) and arginine vasopressin(AVP) levels and higher beta-endorphin(ß-EP) level(P<0.05), which indicated that vinegar-processed C. longa regulated the levels of pain factors to exert the pain-relieving effect. Drug intervention decreased the whole blood viscosity low-cut, medium-cut and high-cut values, plasma viscosity, whole blood reduction viscosity low-cut and high-cut values, erythrocyte cumulative pressure, and equation K value of erythrocyte sedimentation rate(P<0.05), and the vinegar-processed C. longa group outperformed other groups. This result indicated that vinegar processing enhanced the function of C. longa in improving the local blood rheology. C. longa processed with vinegar can enter the liver to relieve the da-mage to the heart, liver, kidney, and uterus, repair the liver function, and recover the sex hormone levels and immune function by regulating the levels of sex hormones and pain factors and improving the blood rheology. It activates the pain-relieving mechanism to relieve the pain, protect the liver, and fight inflammation, which is consistent with the theory that vinegar processing facilitates C. longa entering the liver to sooth liver and relieve pain.


Asunto(s)
Ácido Acético , Dismenorrea , Humanos , Femenino , Ratas , Animales , Dismenorrea/tratamiento farmacológico , Curcuma , Depresión , Qi , Hígado , Hormonas Esteroides Gonadales , Bilirrubina
14.
Eur J Pharmacol ; 954: 175803, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37295764

RESUMEN

Peritoneal adhesion is a common abdominal surgical complication that induces abdominal haemorrhage, intestinal obstruction, infertility, and so forth. The high morbidity and recurrence rate of this disease indicate the need for novel therapeutic approaches. Here, we revealed the protective roles of tetrahydroberberrubine (THBru), a novel derivative of berberine (BBR), in preventing peritoneal adhesion and identified its underlying mechanism in vivo and in vitro. Abrasive surgery was used to create a peritoneal adhesion rat model. We found that THBru administration markedly ameliorated peritoneal adhesion, as indicated by a lowered adhesion score and ameliorated caecal tissue damage. By comparison, THBru exhibited more potent anti-adhesion effects than BBR at the same dose. Mechanistically, THBru inhibited inflammation and extracellular matrix (ECM) accumulation in the microenvironment of adhesion tissue. THBru suppressed the expression of inflammatory cytokines including interleukin-1ß (IL-1ß), IL-6, transforming growth factor ß (TGF-ß), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1), by regulating the transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) and TAK1/nuclear factor κB (NF-κB) signaling pathways. However, THBru promoted the activation of MMP-3 by directly blocking the TIMP-1 activation core and subsequently decreased collagen deposition. Taken together, this study identifies THBru as an effective anti-adhesion agent that regulates diverse mechanisms, thereby outlining its potential therapeutic implications for the treatment of peritoneal adhesion.


Asunto(s)
Berberina , Ratas , Animales , Berberina/farmacología , Berberina/uso terapéutico , Inflamación/tratamiento farmacológico , FN-kappa B/metabolismo , Factor de Crecimiento Transformador beta/uso terapéutico , Matriz Extracelular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
15.
J Environ Manage ; 344: 118369, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356328

RESUMEN

The spread of antibiotic resistance genes (ARGs) is an emerging global health concern, and wastewater treatment plants (WWTPs), as an essential carrier for the occurrence and transmission of ARGs, deserves more attention. Based on the Illumina NovaSeq high-throughput sequencing platform, this study conducted a metagenomic analysis of 18 samples from three full-scale WWTPs to explore the fate of ARGs in the whole process (influent, biochemical treatment, advanced treatment, and effluent) of wastewater treatment. Total 70 ARG subtypes were detected, among which multidrug, aminoglycoside, tetracycline, and macrolide ARGs were most abundant. The different treatment processes used for three WWTPs were capable of reducing ARG diversity, but did not significantly reduce ARG abundance. Compared to that by denitrification filters, the membrane bioreactor (MBR) process was advantageous in controlling the prevalence of multidrug ARGs in WWTPs. Linear discriminant analysis Effect Size (LEfSe) suggested g_Nitrospira, g_Curvibacter, and g_Mycobacterium as the key bacteria responsible for differential ARG prevalence among different WWTPs. Meanwhile, adeF, sul1, and mtrA were the persistent antibiotic resistance genes (PARGs) and played dominant roles in the prevalence of ARGs. Proteobacteria and Actinobacteria were the host bacteria of majority ARGs in WWTPs, while Pseudomonas and Nitrospira were the most crucial host bacteria influencing the dissemination of critical ARGs (e.g., adeF). In addition, microbial richness was determined to be the decisive factor affecting the diversity and abundance of ARGs in wastewater treatment processes. Overall, regulating the abundance of microorganisms and key host bacteria by selecting processes with microbial interception, such as MBR process, may be beneficial to control the prevalence of ARGs in WWTPs.


Asunto(s)
Antibacterianos , Purificación del Agua , Antibacterianos/farmacología , Aguas Residuales , Genes Bacterianos , Prevalencia , Bacterias/genética , Farmacorresistencia Microbiana/genética
16.
J Nat Prod ; 86(6): 1512-1519, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37200613

RESUMEN

One new aromatic polyketide, prealnumycin B (1), and four known aromatic polyketides, K1115A (2), 1,6-dihydroxy-8-propylanthraquinone (DHPA, 3), phaeochromycin B (4), and (R)-7-acetyl-3,6-dihydroxy-8-propyl-3,4dihydronaphthalen-1(2H)-one (5), were isolated from the marine-derived Streptomyces sundarbansensis SCSIO NS01; these compounds represent four sets of aromatic polyketides differing in size and shape. A type II polyketide synthase (PKS) cluster, als, was identified by complete genome sequencing and was shown, by in vivo gene inactivation experiments in the wild-type (WT) NS01 strain and heterologous expression experiments, to encode the biosynthesis of compounds 1-5. Moreover, heterologous expression of the als cluster afforded three additional aromatic polyketides representing two different carbon skeletons, the new phaeochromycin L (6) and two known aromatic polyketides, phaeochromycins D (7) and E (8). These findings expand our knowledge of type II PKS machineries and their versatility in generating structurally diverse aromatic polyketides and highlight the power of type II PKSs in accessing new polyketides via ectopic expression in heterologous hosts.


Asunto(s)
Carbono , Policétidos , Silenciador del Gen , Familia de Multigenes , Sintasas Poliquetidas/genética , Esqueleto
17.
Front Genet ; 14: 1172321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234867

RESUMEN

WRKY transcription factors have been demonstrated to influence the anthocyanin biosynthesis in many plant species. However, there is limited knowledge about the structure and function of WRKY genes in the major ornamental plant azalea (Rhododendron simsii). In this study, we identified 57 RsWRKY genes in the R. simsii genome and classified them into three main groups and several subgroups based on their structural and phylogenetic characteristics. Comparative genomic analysis suggested WRKY gene family has significantly expanded during plant evolution from lower to higher species. Gene duplication analysis indicated that the expansion of the RsWRKY gene family was primarily due to whole-genome duplication (WGD). Additionally, selective pressure analysis (Ka/Ks) suggested that all RsWRKY duplication gene pairs underwent purifying selection. Synteny analysis indicated that 63 and 24 pairs of RsWRKY genes were orthologous to Arabidopsis thaliana and Oryza sativa, respectively. Furthermore, RNA-seq data was used to investigate the expression patterns of RsWRKYs, revealing that 17 and 9 candidate genes may be associated with anthocyanin synthesis at the bud and full bloom stages, respectively. These findings provide valuable insights into the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species and lay the foundation for future functional studies of WRKY genes.

18.
Zhongguo Zhong Yao Za Zhi ; 48(3): 649-659, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872228

RESUMEN

Liquid chromatography-mass spectrometry was employed to analyze the chemical components in Curcuma longa tuberous roots(HSYJ), C. longa tuberous roots processed with vinegar(CHSYJ), and rat serum after the administration. The active components of HSYJ and CHSYJ absorbed in serum were identified based on the secondary spectrum of database and literature. The targets of primary dysmenorrhea was screened out from database. The protein-protein interaction network analysis, gene ontology(GO) functional annotation, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the common targets shared by the drug active components in serum and primary dysmenorrhea, and the component-target-pathway network was constructed. AutoDock was used to conduct molecular docking between the core components and targets. A total of 44 chemical components were identified from HSYJ and CHSYJ, including 18 absorbed in serum. On the basis of network pharmacology, we identified 8 core components(including procurcumenol, isobutyl p-hydroxybenzoate, ferulic acid, and zedoarondiol) and 10 core targets \[including interleukin-6(IL-6), estrogen receptor 1(ESR1), and prostaglandin-endoperoxide synthase 2(PTGS2)\]. The core targets were mainly distributed in the heart, liver, uterus, and smooth muscle. The molecular docking results showed that the core components were well bound to the core targets, indicating that HSYJ and CHSYJ may exert therapeutic effect on primary dysmenorrhea via estrogen, ovarian steroidogenesis, tumor necrosis factor(TNF), hypoxia-inducible factor-1(HIF-1), IL-17 and other signaling pathways. This study clarifies the HSYJ and CHSYJ components absorbed in serum, as well as the corresponding mechanism, providing a reference for further elucidating the therapeutic material basis and clinical application of HSYJ and CHSYJ.


Asunto(s)
Ácido Acético , Curcuma , Femenino , Humanos , Animales , Ratas , Dismenorrea , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Ciclooxigenasa 2
19.
World J Clin Cases ; 11(5): 1058-1067, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36874431

RESUMEN

BACKGROUND: Thyroid cancer (TC) is a common malignant tumor in the endocrine system. In recent years, the incidence and recurrence rates of TC have been raising due to increasing work pressure and irregular lifestyles. Thyroid-stimulating hormone (TSH) is a specific parameter for thyroid function screening. This study aims to explore the clinical value of TSH in regulating the progression of TC, so as to find a breakthrough for the early diagnosis and treatment of TC. AIM: To explore the value and safety of TSH in the clinical efficacy of patients with TC. METHODS: 75 patients with TC admitted to the Department of Thyroid and Breast Surgery of our hospital from September 2019 to September 2021 were selected as the observation group, and 50 healthy subjects were selected as the control group during the same period. The control group was treated with conventional thyroid replacement therapy, and the observation group was treated with TSH suppression therapy. The soluble interleukin (IL)-2 receptor (sIL-2R), IL-17, IL-35 levels, free triiodothyronine (FT3), free tetraiodothyronine (FT4), CD3+, CD4+, CD8+, CD44V6, and tumor supplied group of factor (TSGF) levels were observed in the two groups. The occurrence of adverse reactions was compared between the two groups. RESULTS: After treatment with different therapies, the levels of FT3, FT4, CD3+, and CD4+ in the observation group and the control group were higher than those before treatment, while the levels of CD8+, CD44V6, and TSGF were lower than those before treatment, and the differences were statistically significant (P < 0.05). More importantly, the levels of sIL-2R and IL-17 in the observation group were lower than those in the control group after 4 wk of treatment, while the levels of IL-35 were higher than those in the control group, and the differences were statistically significant (P < 0.05). The levels of FT3, FT4, CD3 +, and CD4 + in the observation group were higher than those in the control group, and the levels of CD8+, CD44V6, and TSGF were lower than those in the control group. There was no significant difference in the overall incidence rate of adverse reactions between the two groups (P > 0.05). CONCLUSION: TSH suppression therapy can improve the immune function of patients with TC, lower the CD44V6 and TSGF levels, and improve serum FT3 and FT4 levels. It demonstrated excellent clinical efficacy and a good safety profile.

20.
ChemSusChem ; 16(12): e202300015, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36905229

RESUMEN

With a view to using solar energy, the exploitation of near-infrared (NIR) light, which constitutes about 50 % of solar energy, in photocatalytic H2 O2 synthesis remains challenging. In this study, resorcinol-formaldehyde (RF), which has a relatively low bandgap and high conductivity, is introduced for photothermal catalytic generation of H2 O2 under ambient conditions. Owing to the promoted surface charge transfer rate under high temperature, the photosynthetic yield reaches roughly 2000 µm within 40 min under 400 mW cm-2 irradiation with a solar-to-chemical conversion (SCC) efficiency of up to 0.19 % at 338 K under ambient conditions, exceeding the rate of photocatalysis with a cooling system by a factor of about 2.5. Notably, the H2 O2 produced by RF during photothermal process was formed via a two-channel pathway, leading to the overall promotion of H2 O2 formation. The resultant H2 O2 can be applied in situ for pollutant removal. This work offers a sustainable and economical route for the efficient formation of H2 O2 .


Asunto(s)
Energía Solar , Fotosíntesis , Catálisis , Conductividad Eléctrica , Formaldehído , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...