Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Biotechnol ; 35(1): 2356110, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38804592

RESUMEN

The inducing activation event of secondary hair follicle (SHF)-stem cells is considered a key biological process in the SHF regeneration, and the morphogenesis of cashmere fiber in cashmere goats. The miR-361-5p was essentially implicated in the induced activation of SHF-stem cells of cashmere goats, but its functional mechanisms are unclear. Here, we confirmed miR-361-5p was significantly downregulated in anagen SHF bugle of cashmere goats compared with that at telogen, and miR-361-5p expression was significantly lower in SHF-stem cells after activation than its counterpart before activation. Further, we found that miR-361-5p could negatively regulate the induced activation event of SHF-stem cells in cashmere goats. Mechanistically, through dual-luciferase reporter assays, miR-361-5p specifically bound with FOXM1 mRNA in SHF-stem cells of cashmere goats and negatively regulated the expression of FOXM1 gene. Also, through overexpression/knockdown analysis of FOXM1 gene, our results indicated that FOXM1 upregulated the expression of Wnt/ß-catenin pathway related genes in SHF-stem cells. Moreover, based on TOP/FOP-flash Wnt report assays, the knockdown of miR-361-5p promotes the Wnt/ß-catenin pathway activation through upregulating the FOXM1 expression in SHF-stem cells. Finally, we demonstrated that miR-361-5p negatively regulated the induced activation of SHF-stem cells through FOXM1 mediated Wnt/ß-catenin pathway in cashmere goats.


Asunto(s)
Proteína Forkhead Box M1 , Cabras , Folículo Piloso , MicroARNs , Células Madre , Vía de Señalización Wnt , Animales , Cabras/genética , MicroARNs/genética , MicroARNs/metabolismo , Vía de Señalización Wnt/genética , Folículo Piloso/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Células Madre/fisiología , Células Madre/metabolismo , Técnicas de Silenciamiento del Gen
2.
Genes Dis ; 11(4): 101070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523673

RESUMEN

Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two ß rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit ß1, ß2, and ß5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.

3.
Animals (Basel) ; 14(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38254355

RESUMEN

The cashmere, a kind of nature protein fiber, is one of the main use of cashmere goats. The induced activation of secondary hair follicle (SHF) stem cells by the dermal papilla cell-derived signals is a key biological process for the morphogenesis and growth of cashmere fiber in cashmere goats. Previously, the circRNA-ERCC6 (circERCC6) was identified from cashmere goat SHFs; however, its biological significance is unclear in the SHF physiology process of cashmere goats. In this study, we found that circERCC6 exhibited significantly higher expression at anagen SHF bulge compared with the counterpart of telogen and harbored three m6A modified sites (named m6A-685, m6A-862, and m6A-995) through methylation immunoprecipitation using a real-time quantitative polymerase chain reaction (Me-RIP-qPCR) technique. The knockdown experiments of circERCC6 in SHF stem cells showed that circERCC6 positively regulates the induced activation of SHF stem cells in cashmere goats. Through a dual-luciferase reporter assay, we demonstrated that m6A-modified circERCC6 (m6A-circERCC6) sponged miR-412-3p to upregulate the expression of BNC2 mRNA in SHFstem cells. Through m6A-deficient mutant assay in circERCC6 knockdown SHF stem cells, we further showed that m6A modification within circERCC6 is required to mediate the miR-412-3p/BNC2 axis to finally promote the proper induced activation of SHF stem cells in cashmere goats.

4.
Virus Res ; 341: 199316, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215982

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection is a major public health problem. After HBV infection, viral antigens shift the immune balance in favor of viral escape. Sulforaphane (SFN) is a traditional Chinese medicine.It regulates multi-biological activities, including anti-inflammation, anticancer, and antiviral. However, few studies reported that SFN can inhibit HBV infection before. METHODS: An immunocompetent HBV CBA/CaJ mouse model and a co-culture model were used to explore the effect of SFN on HBV and whether SFN altered the immune balance after HBV infection. RESULTS: We found that SFN was able to reduce HBV DNA, cccDNA, HBsAg, HBeAg, and HBcAg levels in serum and liver tissues of HBV-infected mice. In vitro and in vivo experiments showed that SFN could significantly increase the expression of Cd86 and iNOS and inhibit the expression of Arg1 on macrophages after HBV infection. After SFN administration, Th17 markers in liver tissue and serum were significantly increased. There was no significant changes in the proportion of Treg cells in peripheral blood, but a significant increase in the proportion of Th17 cells and decrease of the Treg/Th17 ratio. Using a network pharmacology approach, we predicted macrophage migration inhibitory factor (MIF) as a potential target of SFN and further validated that MIF expression was significantly increased after HBV infection and SFN significantly inhibited MIF expression both in vitro and in vivo. There was an upward trend in HBV markers (p>0.05) after MIF overexpression. Overexpression of MIF combined with the use of SFN resulted in a significant reversion in the expression of HBV markers and polarization of macrophages towards the M1 phenotype. CONCLUSION: Our results indicated that immunocompetent HBV CBA/CaJ mouse model is a good model to evaluate HBV infection. SFN could inhibit the expression of HBV markers, promote polarization of macrophages towards the M1 phenotype after HBV infection, change the proportion of Treg and Th17 cells. Our findings demonstrate that SFN inhibit HBV infection by inhibiting the expression of MIF and promoting the polarization of macrophages towards the M1 phenotype, which illustrates a promising therapeutic approach in HBV infection.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Isotiocianatos , Factores Inhibidores de la Migración de Macrófagos , Sulfóxidos , Animales , Ratones , ADN Viral/metabolismo , Virus de la Hepatitis B/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones Endogámicos CBA , Linfocitos T Reguladores , Células Th17/metabolismo
5.
RSC Adv ; 13(28): 19388-19402, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37383683

RESUMEN

The preparation of freestanding graphene films by convenient and environmentally friendly preparation methods is still the focus of attention in various industrial fields. Here, we first select electrical conductivity, yield and defectivity as evaluation indicators and systematically explore the factors affecting the preparation of high-performance graphene by electrochemical exfoliation, then further post-process it under volume-limited conditions by microwave reduction. Finally, we obtained a self-supporting graphene film with an irregular interlayer structure but excellent performance. It is found that the electrolyte is ammonium sulfate, the concentration is 0.2 M, the voltage is 8 V, and the pH is 11, which were the optimal conditions for preparing low-oxidation graphene. The square resistance of the EG was 1.6 Ω sq-1, and the yield could be 65%. In addition, electrical conductivity and joule heat were significantly improved after microwave post-processing, especially its electromagnetic shielding performance with a shielding coefficient of 53 dB able to be achieved. At the same time, the thermal conductivity is as low as 0.05 W m-1 K-1. The mechanism for the improvement of electromagnetic shielding performance is that (1) microwave reduction effectively enhances the conductivity of the graphene sheet overlapping network; (2) the gas generated by the instantaneous high temperature causes a large number of void structures between the graphene layers, and the irregular interlayer stacking structure makes the reflective surface more disordered, thereby prolonging the reflection path of electromagnetic waves among layers. In summary, this simple and environmentally friendly preparation strategy has good practical application prospects for graphene film products in flexible wearables, intelligent electronic devices, and electromagnetic wave protection.

6.
Proc Natl Acad Sci U S A ; 119(52): e2211285119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534796

RESUMEN

The outstanding mechanical and chemical properties of dental enamel emerge from its complex hierarchical architecture. An accurate, detailed multiscale model of the structure and composition of enamel is important for understanding lesion formation in tooth decay (dental caries), enamel development (amelogenesis) and associated pathologies (e.g., amelogenesis imperfecta or molar hypomineralization), and minimally invasive dentistry. Although features at length scales smaller than 100 nm (individual crystallites) and greater than 50 µm (multiple rods) are well understood, competing field of view and sampling considerations have hindered exploration of mesoscale features, i.e., at the level of single enamel rods and the interrod enamel (1 to 10 µm). Here, we combine synchrotron X-ray diffraction at submicrometer resolution, analysis of crystallite orientation distribution, and unsupervised machine learning to show that crystallographic parameters differ between rod head and rod tail/interrod enamel. This variation strongly suggests that crystallites in different microarchitectural domains also differ in their composition. Thus, we use a dilute linear model to predict the concentrations of minority ions in hydroxylapatite (Mg2+ and CO32-/Na+) that plausibly explain the observed lattice parameter variations. While differences within samples are highly significant and of similar magnitude, absolute values and the sign of the effect for some crystallographic parameters show interindividual variation that warrants further investigation. By revealing additional complexity at the rod/interrod level of human enamel and leaving open the possibility of modulation across larger length scales, these results inform future investigations into mechanisms governing amelogenesis and introduce another feature to consider when modeling the mechanical and chemical performance of enamel.


Asunto(s)
Amelogénesis Imperfecta , Caries Dental , Humanos , Cristalografía , Amelogénesis , Esmalte Dental
7.
Viral Immunol ; 35(9): 597-608, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36099202

RESUMEN

Several studies have reported that hepatitis B virus (HBV) infection is mediated by macrophages and that the B7x (B7-H4, VTCN-1) protein plays an important role in immune regulation in HBV-associated hepatocellular carcinoma (HBV-HCC). However, the relationship among HBV, macrophages, and B7x has not been studied. In this study, HBV-infected mouse model and coculture of HBV cell lines and macrophages were used to observe the changes in macrophages and the role of B7x after HBV infection. The expression of HBV markers (HBeAg, HBsAg), negative regulator of immunity (B7x), T-helper 17 (Th17)/T-regulatory (Treg)-related cytokines, and macrophage markers, as well as changes in the apoptosis and cell cycle of macrophages were analyzed through reverse transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, western blot, and flow cytometry. The expression of HBsAg, HBeAg, and B7x increased and the levels of macrophage surface marker and Treg cells secrete related cytokines (IL-10 and TGF-ß) were altered after HBV infection both in vivo and in vitro. Apoptosis of macrophages increased, and cell cycle arrest occurred in vitro. These effects, except those in the cell cycle, were reversed when B7x was knocked down. Thus, HBV infection can promote the expression of B7x, which in turn regulates the Th17/Treg balance and affects the expression of HBsAg and HBeAg. The mechanism used by B7x likely involves the promotion of macrophage polarization and apoptosis. These results suggest that B7x is a novel target for HBV immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Hepatitis B , Neoplasias Hepáticas , Ratones , Animales , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B/metabolismo , Antígenos e de la Hepatitis B/metabolismo , Citocinas/metabolismo , Macrófagos
8.
Virol J ; 18(1): 196, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34583732

RESUMEN

BACKGROUND: GATA binding protein 4 (GATA4) has been reported as a potential target of gene therapy for hepatocellular carcinoma (HCC). It is well known that the main cause of HCC is the chronic infection of hepatitis B virus (HBV). However, whether the effect of GATA4 on HBV has not yet been reported. METHODS: In this study, the regulation of GATA4 on HBV was analyzed in vitro. In turn, the effect of HBV on GATA4 was also observed in vitro, in vivo, and clinical HCC patients. Subsequently, we analyzed whether the effect of GATA4 on HBV was related to hepatocyte nuclear factor 4 alpha (HNF4α) in vitro. RESULTS: The results showed that GATA4 significantly promoted the secretion of HBV surface antigen (HBsAg) and HBV e antigen in the cell culture medium, improved the replication of HBV genomic DNA, and increased the level of HBV 3.5 kb pre-genomic RNA and HBV total RNA (P < 0.05). Moreover, it was showed that HBV had no significant effect on GATA4 in vitro and in vivo (P > 0.05). At the same time, GATA4 expression was decreased in 78.9% (15/19) of HCC patients regardless of the HBV and HBsAg status. Among them, there were 76.9% (10/13) in HBV-associated patients with HCC (HBV-HCC), and 83.3% (5/6) in non-HBV-HCC patients. In addition, the expression of HNF4α was also up-regulated or down-regulated accordingly when stimulating or interfering with the expression of GATA4. Furthermore, stimulating the expression of HNF4α could only alleviate the HBsAg level and HBV transcription levels, but had no significant effect on GATA4. CONCLUSIONS: In summary, this study found that GATA4 has a positive effect on HBV, and the potential pathway may be related to another transcription factor HNF4α that regulates HBV.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Factor Nuclear 4 del Hepatocito/metabolismo , Neoplasias Hepáticas , Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B , Factor Nuclear 4 del Hepatocito/genética , Humanos
9.
Phys Rev Lett ; 125(22): 225503, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33315460

RESUMEN

Combining spatially resolved x-ray Laue diffraction with atomic-scale simulations, we observe how ion-irradiated tungsten undergoes a series of nonlinear structural transformations with increasing radiation exposure. Nanoscale defect-induced deformations accumulating above 0.02 displacements per atom (dpa) lead to highly fluctuating strains at ∼0.1 dpa, collapsing into a driven quasisteady structural state above ∼1 dpa. The driven asymptotic state is characterized by finely dispersed vacancy defects coexisting with an extended dislocation network and exhibits positive volumetric swelling, due to the creation of new crystallographic planes through self-interstitial coalescence, but negative lattice strain.

10.
J Synchrotron Radiat ; 27(Pt 5): 1430-1437, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876620

RESUMEN

Measurement modalities in Bragg coherent diffraction imaging (BCDI) rely on finding a signal from a single nanoscale crystal object which satisfies the Bragg condition among a large number of arbitrarily oriented nanocrystals. However, even when the signal from a single Bragg reflection with (hkl) Miller indices is found, the crystallographic axes on the retrieved three-dimensional (3D) image of the crystal remain unknown, and thus localizing in reciprocal space other Bragg reflections becomes time-consuming or requires good knowledge of the orientation of the crystal. Here, the commissioning of a movable double-bounce Si (111) monochromator at the 34-ID-C endstation of the Advanced Photon Source is reported, which aims at delivering multi-reflection BCDI as a standard tool in a single beamline instrument. The new instrument enables, through rapid switching from monochromatic to broadband (pink) beam, the use of Laue diffraction to determine crystal orientation. With a proper orientation matrix determined for the lattice, one can measure coherent diffraction patterns near multiple Bragg peaks, thus providing sufficient information to image the full strain tensor in 3D. The design, concept of operation, the developed procedures for indexing Laue patterns, and automated measuring of Bragg coherent diffraction data from multiple reflections of the same nanocrystal are discussed.

11.
Cancer Manag Res ; 12: 7753-7760, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922076

RESUMEN

INTRODUCTION: Breast cancer is a serious threat to human health. It is meaningful to study the pathogenesis of breast cancer. lncRNAs have been found to play vital roles in numerous biological processes including development, immunology and cancer. METHODS: qRT-PCR was performed to examine the expressions of PART1 and miR-4516. CCK-8 assay, colony formation assay and transwell assay were used to examine the progression of breast cancer cells. RESULTS: In this study, we showed that lncRNA PART1 was highly expressed in breast cancer cells. Knockdown of PART1 induced decreased proliferation, invasion and migration of breast cancer cells. Moreover, we found that PART1 can bind to miR-4516 directly. We also found that inhibition of miR-4516 could rescue the decreased proliferation, migration and invasion of breast cancer cells induced by knockdown of PART1. DISCUSSION: lncRNA PART1 and miR-4516 were proven to be involved in the progression of many cancers. However, the roles of lncRNA PART1 and miR-4516 in the regulation of breast cancer remain unknown. Here, we demonstrated that PART1 can bind to miR-4516 to decrease the expression of miR-4516 and promote the development of breast cancer.

12.
Adv Mater ; 32(37): e2003417, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32761698

RESUMEN

Crystallographic defects exist in many redox active energy materials, e.g., battery and catalyst materials, which significantly alter their chemical properties for energy storage and conversion. However, there is lack of quantitative understanding of the interrelationship between crystallographic defects and redox reactions. Herein, crystallographic defects, such as geometrically necessary dislocations, are reported to influence the redox reactions in battery particles through single-particle, multimodal, and in situ synchrotron measurements. Through Laue X-ray microdiffraction, many crystallographic defects are spatially identified and statistically quantified from a large quantity of diffraction patterns in many layered oxide particles, including geometrically necessary dislocations, tilt boundaries, and mixed defects. The in situ and ex situ measurements, combining microdiffraction and X-ray spectroscopy imaging, reveal that LiCoO2 particles with a higher concentration of geometrically necessary dislocations provide deeper charging reactions, indicating that dislocations may facilitate redox reactions in layered oxides during initial charging. The present study illustrates that a precise control of crystallographic defects and their distribution can potentially promote and homogenize redox reactions in battery materials.

13.
Nature ; 573(7775): 558-562, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31554980

RESUMEN

High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal1, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate2,3. Therefore, understanding such transitions remains an important objective in condensed matter physics4,5. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close-packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.


Asunto(s)
Hidrógeno/química , Modelos Moleculares , Presión , Electrónica , Difracción de Neutrones , Transición de Fase , Difracción de Rayos X
14.
J Chem Theory Comput ; 15(3): 1728-1742, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30681844

RESUMEN

Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the past decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method allows one to systematically approach the exact solution of such problems, for cases where very high accuracy is desired. The introduction of FCIQMC has subsequently led to the development of coupled cluster Monte Carlo (CCMC) and density matrix quantum Monte Carlo (DMQMC), allowing stochastic sampling of the coupled cluster wave function and the exact thermal density matrix, respectively. In this Article, we describe the HANDE-QMC code, an open-source implementation of FCIQMC, CCMC and DMQMC, including initiator and semistochastic adaptations. We describe our code and demonstrate its use on three example systems; a molecule (nitric oxide), a model solid (the uniform electron gas), and a real solid (diamond). An illustrative tutorial is also included.

15.
Proc Natl Acad Sci U S A ; 115(8): 1713-1717, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432145

RESUMEN

The diamond anvil cell (DAC) is considered one of the dominant devices to generate ultrahigh static pressure. The development of the DAC technique has enabled researchers to explore rich high-pressure science in the multimegabar pressure range. Here, we investigated the behavior of the DAC up to 400 GPa, which is the accepted pressure limit of a conventional DAC. By using a submicrometer synchrotron X-ray beam, double cuppings of the beveled diamond anvils were observed experimentally. Details of pressure loading, distribution, gasket-thickness variation, and diamond anvil deformation were studied to understand the generation of ultrahigh pressures, which may improve the conventional DAC techniques.

16.
Nat Commun ; 8(1): 509, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894143

RESUMEN

Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. The silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reaction dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.Minerals are rarely explored as building blocks for dynamic inorganic materials. Here, the authors derive inspiration from fish scales to create mutable surfaces based on arrays of calcite crystals, in which one end of each crystal is immobilized in and regenerated from silicone, and the other functional end is left exposed.

17.
J Synchrotron Radiat ; 23(Pt 5): 1241-4, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27577782

RESUMEN

A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.

18.
Rev Sci Instrum ; 87(5): 052004, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250384

RESUMEN

We developed a portable X-ray grating interferometer setup as a standard tool for testing optics at the Advanced Photon Source (APS) beamline 1-BM. The interferometer can be operated in phase-stepping, Moiré, or single-grating harmonic imaging mode with 1-D or 2-D gratings. All of the interferometer motions are motorized; hence, it is much easier and quicker to switch between the different modes of operation. A novel aspect of this new instrument is its designed portability. While the setup is designed to be primarily used as a standard tool for testing optics at 1-BM, it could be potentially deployed at other APS beamlines for beam coherence and wavefront characterization or imaging. The design of the interferometer system is described in detail and coherence measurements obtained at the APS 34-ID-E beamline are presented. The coherence was probed in two directions using a 2-D checkerboard, a linear, and a circular grating at X-ray energies of 8 keV, 11 keV, and 18 keV.

19.
Acta Mater ; 1122016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616819

RESUMEN

Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) AA1050 after 1, 2, and 8 passes. This is the first time that full tensors were measured in plastically deformed metals at this length scale. This work supplements previous studies that measured long range internal stresses (LRIS) in ECAP AA1050 of multiple passes, but only for a single direction. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8 pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σa for 1 pass, -0.44 σa for 2 pass, and 0.14 σa for the 8 pass sample. These LRISs appear to be larger than LRISs reported by previous works (using single reflection measurements).

20.
IUCrJ ; 2(Pt 6): 635-42, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26594371

RESUMEN

Nondestructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 µm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positions were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...