Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 595: 98-106, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33819694

RESUMEN

Exploring high performance photocatalysts is of great importance to relieve the environment pollution issues. In this paper, we introduce a facile antisolvent solvothermal method to synthesize methylammonium lead tribromide perovskite (MAPbBr3) nanocrystals and successfully employ them as efficient photocatalysts. Compared to the room temperature synthesized MAPbBr3 (RT-MAPbBr3), the antisolvent solvothermal synthesized MAPbBr3 (AS-MAPbBr3) has multiple outstanding properties, such as improved crystallinity with lower grain boundary density, enhanced light absorption in visible range, suitable band gap of 2.31 eV and extended photoluminescence (PL) lifetime as long as 2627.82 ns. By taking advantages of the above merits, the AS-MAPbBr3 exhibits efficient photocatalytic performance by decomposition of methyl orange under solar light. A high apparent rate constant of 101.2 × 10-3 is achieved along with excellent cyclability, which significantly outperforms the RT-MAPbBr3 (56.0 × 10-3) and P25 (16.5 × 10-3). The underlying mechanism for MO photocatalytic degradation is deeply explored and proposed. Our present study suggests that the antisolvent solvothermal method can be a promising method to synthesize perovskite nanocrystals, and might also provide some insights in developing a series of high performance perovskite based photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA