Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Health Sci Rep ; 7(6): e2120, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831777

RESUMEN

Background and Aims: Natural products are widely used in the pharmaceutical and cosmetics industries due to their high-value bioactive compounds, which make for "greener" and more environmentally friendly ingredients. These natural compounds are also considered a safer alternative to antibiotics, which may result in antibiotic resistance as well as unfavorable side effects. The development of cosmeceuticals, which combine the cosmetic and pharmaceutical fields to create skincare products with therapeutic value, has increased the demand for unique natural resources. The objective of this review is to discuss the biological properties of extracts derived from larvae of the black soldier fly (BSF; Hermetia illucens), the appropriate extraction methods, and the potential of this insect as a novel active ingredient in the formulation of new cosmeceutical products. This review also addresses the biological actions of compounds originating from the BSF, and the possible association between the diets of BSF larvae and their subsequent bioactive composition. Methods: A literature search was conducted using PubMed and Google Scholar to identify and evaluate the various biological properties of the BSF. Results: One such natural resource that may be useful in the cosmeceutical field is the BSF, a versatile insect with numerous potential applications due to its nutrient content and scavenging behavior. Previous research has also shown that the BSF has several biological properties, including antimicrobial, antioxidant, anti-inflammatory, and wound healing effects. Conclusion: Given the range of biological activities and metabolites possessed by the BSF, this insect may have the cosmeceutical potential to treat a number of skin pathologies.

2.
Opt Express ; 32(11): 19541-19551, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859087

RESUMEN

What we believe is a novel dual-channel whispering gallery mode (WGM) sensor for concurrently measuring bidirectional magnetic field and temperature is proposed and demonstrated. Two sensing microcavities [magnetic fluid (MF)-infiltrated capillary and polydimethylsiloxane (PDMS)-coated microbottle, respectively, referred as Channel 1 (CH1) and Channel 2 (CH2)] are integrated into a silica capillary to facilitate the dual-channel design. Resonant wavelengths corresponding to CH1 and CH2 mainly depend on the change in the magneto-induced refractive index and the change in the thermo-induced parameter (volume and refractive index) of the employed functional materials, respectively. The MF-infiltrated capillary enables bidirectional magnetic field sensing with maximum sensitivities of 46 pm/mT and -3 pm/mT, respectively. The PDMS-coated structure can realize the temperature measurement with a maximum sensitivity of 79.7 pm/°C. The current work possesses the advantage of bidirectionally magnetic tunability besides the temperature response, which is expected to be used in field such as vector magnetic fields and temperature dual-parameter sensing.

3.
J Ethnopharmacol ; 330: 118268, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38677569

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shaoyao Gancao Fuzi Decoction (SGFD), has been employed for thousands of years in the treatment of rheumatoid arthritis (RA) with remarkable clinical efficacy. However, the material basis underlying the effectiveness of SGFD still remains unclear. AIM OF THE REVIEW: This study aims to elucidate the material basis of SGFD through the application of network pharmacology and biological affinity ultrafiltration. RESULTS: UPLC-Q-TOF-MS/MS was employed to characterize the components in SGFD, the identified 145 chemical components were mainly categorized into alkaloids, flavonoids, triterpenoids, and monoterpenoids according to the structures. Network pharmacology method was utilized to identify potential targets and signaling pathways of SGFD in the RA treatment, and the anti-inflammatory and anti-RA effects of SGFD were validated through in vivo and in vitro experiments. Moreover, as the significant node in the pharmacology network, TNF-α, a classical therapeutic target in RA, was subsequent employed to screen the interacting compounds in SGFD via affinity ultrafiltration screening method, 6 active molecules (i.e.,glycyrrhizic acid, paeoniflorin, formononetin, isoliquiritigenin, benzoyl mesaconitine, and glycyrrhetinic acid) were exhibited significant interactions. Finally, the significant anti-inflammatory and anti-TNF-α effects of these compounds were validated at the cellular level. CONCLUSIONS: In conclusion, this study comprehensively elucidates the pharmacodynamic material basis of SGFD, offering a practical reference model for the systematic investigation of traditional Chinese medicine formulas.


Asunto(s)
Artritis Reumatoide , Medicamentos Herbarios Chinos , Farmacología en Red , Ultrafiltración , Animales , Humanos , Antiinflamatorios/farmacología , Antirreumáticos/farmacología , Antirreumáticos/aislamiento & purificación , Artritis Reumatoide/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ultrafiltración/métodos
4.
Adv Mater ; 36(21): e2313134, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38331419

RESUMEN

The barrier structure is designed to enhance the operating temperature of the infrared detector, thereby improving the efficiency of collecting photogenerated carriers and reducing dark current generation, without suppressing the photocurrent. However, the development of barrier detectors using conventional materials is limited due to the strict requirements for lattice and band matching. In this study, a high-performance unipolar barrier detector is designed utilizing a black arsenic phosphorus/molybdenum disulfide/black phosphorus van der Waals heterojunction. The device exhibits a broad response bandwidth ranging from visible light to mid-wave infrared (520 nm to 4.6 µm), with a blackbody detectivity of 2.7 × 1010 cmHz-1/2 W-1 in the mid-wave infrared range at room temperature. Moreover, the optical absorption anisotropy of black arsenic phosphorus enables polarization resolution detection, achieving a polarization extinction ratio of 35.5 at 4.6 µm. Mid-wave infrared imaging of the device is successfully demonstrated at room temperature, highlighting the significant potential of barrier devices based on van der Waals heterojunctions in mid-wave infrared detection.

5.
Micromachines (Basel) ; 15(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399018

RESUMEN

A two-channel, time-wavelength interleaved photonic analog-to-digital converter (PADC) system with a sampling rate of 10.4 GSa/s was established, and a concise method for measuring and data correcting the channel sampling timing walk-off of PADCs for signal recovery was proposed. The measurements show that for the two RF signals of f1 = 100 MHz and f2 = 200 MHz, the channel sampling timing walk-off was 12 sampling periods, which results in an ENOB = -0.1051 bits for the 100 MHz directly synthesized signal, while the ENOB improved up to 4.0136 bits using shift synthesis. In addition, the peak limit method (PLM) and normalization processing were introduced to reduce the impacts of signal peak jitter and power inconsistency between two channels, which further improve the ENOB of the 100 MHz signal up to 4.5668 bits. All signals were analyzed and discussed in both time and frequency domains. The 21.1 GHz signal was also collected and converted using the established two-channel PADC system with the data correction method, combining the PLM, normalization, and shift synthesis, showing that the ENOB increased from the initial -0.9181 to 4.1913 bits, which demonstrates that our method can be effectively used for signal recovery in channel-interleaved PADCs.

6.
Hortic Res ; 11(2): uhad293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38371638

RESUMEN

Anthocyanins are the primary color components of grapevine berries and wines. In cultivation practices, a moderate water deficit can promote anthocyanin accumulation in red grape skins. Our previous study showed that abscisic acid (ABA) plays a key role in this process. Herein, we identified a microRNA, vv-miR156b, that is generated in grapevine berries in response to drought stress, along with increasing anthocyanin content and biosynthetic structural gene transcripts. In contrast, vv-miR156b short tandem target mimic (STTM) function-loss callus exhibits the opposite phenotype. Results from in vivo and in vitro experiments revealed that the ABA-signaling-regulated transcription factor VvAREB2 binds directly to the ABA-responsive element (ABRE) of the MIR156b promoter and activates miR156b expression. Furthermore, two miR156b downstream targets, VvSBP8 and VvSBP13, exhibited reduced grape anthocyanin content in their overexpressors but there was a contrary result in their CRISPR-edited lines, the decrease in anthocyanin content was rescued in miR156b and SBP8/13 double overexpressors. We further demonstrated that both VvSBP8 and VvSBP13, encoding transcriptional repressors, displayed sufficient ability to interact with VvMYC1 and VvMYBA1, thereby interfering with MYB-bHLH-WD (MBW) repeat transcriptional complex formation, resulting in the repression of anthocyanin biosynthesis. Our findings demonstrate a direct functional relationship between ABA signaling and the miR156-SBP-MBW complex regulatory module in driving drought-induced anthocyanin accumulation in grape berries.

7.
Adv Mater ; 36(3): e2301197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36960667

RESUMEN

With the continuous advancement of nanofabrication techniques, development of novel materials, and discovery of useful manipulation mechanisms in high-performance applications, especially photodetectors, the morphology of junction devices and the way junction devices are used are fundamentally revolutionized. Simultaneously, new types of photodetectors that do not rely on any junction, providing a high signal-to-noise ratio and multidimensional modulation, have also emerged. This review outlines a unique category of material systems supporting novel junction devices for high-performance detection, namely, the van der Waals materials, and systematically discusses new trends in the development of various types of devices beyond junctions. This field is far from mature and there are numerous methods to measure and evaluate photodetectors. Therefore, it is also aimed to provide a solution from the perspective of applications in this review. Finally, based on the insight into the unique properties of the material systems and the underlying microscopic mechanisms, emerging trends in junction devices are discussed, a new morphology of photodetectors is proposed, and some potential innovative directions in the subject area are suggested.

8.
Adv Mater ; 36(7): e2306772, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37661841

RESUMEN

The vector characteristics of light and the vectorial transformations during its transmission lay a foundation for polarized photodetection of objects, which broadens the applications of related detectors in complex environments. With the breakthrough of low-dimensional materials (LDMs) in optics and electronics over the past few years, the combination of these novel LDMs and traditional working modes is expected to bring new development opportunities in this field. Here, the state-of-the-art progress of LDMs, as polarization-sensitive components in polarized photodetection and even the imaging, is the main focus, with emphasis on the relationship between traditional working principle of polarized photodetectors (PPs) and photoresponse mechanisms of LDMs. Particularly, from the view of constitutive equations, the existing works are reorganized, reclassified, and reviewed. Perspectives on the opportunities and challenges are also discussed. It is hoped that this work can provide a more general overview in the use of LDMs in this field, sorting out the way of related devices for "more than Moore" or even the "beyond Moore" research.

9.
Bioorg Chem ; 142: 106952, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952486

RESUMEN

PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/patología , Proteómica , Proliferación Celular , Puntos de Control del Ciclo Celular , Nitrógeno , Línea Celular Tumoral , Fosfatasas cdc25 , Poli(ADP-Ribosa) Polimerasa-1 , Proteína Quinasa CDC2
10.
Micromachines (Basel) ; 14(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38138324

RESUMEN

The effects of optical sampling pulse power, RF power, and electronic back-end bandwidth on the performance of time- and wavelength-interleaved photonic analog-to-digital converter (PADC) with eight-channel 41.6 GHz pulses have been experimentally investigated in detail. The effective number of bits (ENOB) and peak-to-peak voltage (Vpp) of converted 10.6 GHz electrical signals were used to characterize the effects. For the 1550.116 nm channel with 5.2 G samples per second, an average pulse power of 0 to -10 dBm input to the photoelectric detector (PD) has been tested. The Vpp increased with increasing pulse power. And the ENOB for pulse power -9~-3 dBm was almost the same and all were greater than four. Meanwhile, the ENOB decreased either when the pulse power was more than -2 dBm due to the saturation of PD or when the pulse power was less than -10 dBm due to the non-ignorable noise relative to the converted weak signal. In addition, RF powers of -10~15 dBm were loaded into the Mach-Zehnder modulator (MZM). The Vpp increased with the increase in RF power, and the ENOB also showed an increasing trend. However, higher RF power can saturate the PD and induce greater nonlinearity in MZM, leading to a decrease in ENOB, while lower RF power will convert weak electrical signals with more noise, also resulting in lower ENOB. In addition, the back-end bandwidths of 0.2~8 GHz were studied in the experiments. The Vpp decreased as the back-end bandwidth decreased from 8 to 3 GHz, and remained nearly constant for the bandwidth between the Nyquist bandwidth and the subsampled RF signal frequency. The ENOB was almost the same and all greater than four for a bandwidth from 3 to 8 GHz, and gradually increased up to 6.5 as the back-end bandwidth decreased from the Nyquist bandwidth to 0.25 GHz. A bandwidth slightly larger than the Nyquist bandwidth was recommended for low costs and without compromising performance. In our experiment, the -3 to -5 dBm average pulse power, about 10 dBm RF power, and 3 GHz back-end bandwidth were recommended to accomplish both a high ENOB more than four and large Vpp. Our research provides a solution for selecting optical sampling pulse power, RF power, and electronic back-end bandwidth to achieve low-cost and high-performance PADC.

11.
Redox Biol ; 67: 102930, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37847980

RESUMEN

Benzo[α]pyrene (Bap) is recognized as a ubiquitous environmental pollutant among the polycyclic aromatic hydrocarbons (PAHs) class. Previous studies have shown that the hepatotoxicity of Bap is mainly caused by its metabolites, although it remains unclear whether Bap itself induces such damage. This study integrated metabolomics and chemical proteomics approaches to comprehensively identify the potential target proteins affected by Bap in liver cells. The results from the metabolomics showed that the significant changed metabolites were related with cellular redox homeostasis. CEllular Thermal Shift Assay (CETSA) showed that Bap induced protein thermal displacement of superoxide dismutase 3 (SOD3) and glutathione peroxidase 4 (GPX4), which are closely related to oxidative homeostasis. Further validation through in vitro CETSA and drug affinity response target stability (DARTS) revealed that Bap directly affected the stability of SOD3 and GPX4 proteins. The binding affinities of Bap to the potential target proteins were further evaluated using molecular docking, while the isothermal titration calorimetry (ITC) interaction measurements indicated nanomolar-level Kd values. Importantly, we found that Bap weakened the antioxidant capacity by destroying the activities of SOD3 and GPX4, which provided a new understanding of the mechanism of hepatotoxicity induced by Bap. Moreover, our provided workflow integrating metabolomics and label-free chemical proteomics, can be regarded as a practical way to identify the targets and inter-mechanisms for the various environmental compounds.


Asunto(s)
Benzo(a)pireno , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Benzo(a)pireno/toxicidad , Proteómica/métodos , Simulación del Acoplamiento Molecular , Superóxido Dismutasa , Proteínas , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
12.
Biomater Res ; 27(1): 88, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723499

RESUMEN

BACKGROUND: Drug-resistant bacterial infections in chronic wounds are a persistent issue, as they are resistant to antibiotics and can cause excessive inflammation due to generation of reactive oxygen species (ROS). An effective solution would be to not only combat bacterial infections but also scavenge ROS to relieve inflammation at the wound site. Scaffolds with antioxidant properties are attractive for their ability to scavenge ROS, and there is medical demand in developing antioxidant enzyme-mimicking nanomaterials for wound healing. METHODS: In this study, we fabricated copper-coordination polymer nanoparticles (Cu-CPNs) through a self-assembly process. Furthermore, ε-polylysine (EPL), an antibacterial and cationic polymer, was integrated into the Cu-CPNs structure through a simple one-pot self-assembly process without sacrificing the glutathione peroxidase (GPx) and superoxide dismutase (SOD)-mimicking activity of Cu-CPNs. RESULTS: The resulting Cu-CPNs exhibit excellent antioxidant propertiesin mimicking the activity of glutathione peroxidase and superoxide dismutase and allowing them to effectively scavenge harmful ROS produced in wound sites. The in vitro experiments showed that the resulting Cu-CPNs@EPL complex have superior antioxidant properties and antibacterial effects. Bacterial metabolic analysis revealed that the complex mainly affects the cell membrane integrity and nucleic acid synthesis that leads to bacterial death. CONCLUSIONS: The Cu-CPNs@EPL complex has impressive antioxidant properties and antibacterial effects, making it a promising solution for treating drug-resistant bacterial infections in chronic wounds. The complex's ability to neutralize multiple ROS and reduce ROS-induced inflammation can help relieve inflammation at the wound site. Schematic illustration of the ROS scavenging and bacteriostatic function induced by Cu-CPNs@EPL nanozyme in the treatment of MRSA-infected wounds.

13.
Mol Omics ; 19(10): 769-786, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37498608

RESUMEN

Chinese herbal medicine (CHM) exhibits a broad spectrum of clinical applications and demonstrates favorable therapeutic efficacy. Nonetheless, elucidating the underlying mechanism of action (MOA) of CHM in disease treatment remains a formidable task due to its inherent characteristics of multi-level, multi-linked, and multi-dimensional non-linear synergistic actions. In recent years, the concept of a Quality marker (Q-marker) proposed by Liu et al. has significantly contributed to the monitoring and evaluation of CHM products, thereby fostering the advancement of CHM research. Within this study, a Q-marker screening strategy for CHM formulas has been introduced, particularly emphasising efficacy and biological activities, integrating absorption, distribution, metabolism, and excretion (ADME) studies, systems biology, and experimental verification. As an illustrative case, the Q-marker screening of Qianghuo Shengshi decoction (QHSSD) for treating rheumatoid arthritis (RA) has been conducted. Consequently, from a pool of 159 compounds within QHSSD, five Q-markers exhibiting significant in vitro anti-inflammatory effects have been identified. These Q-markers encompass notopterol, isoliquiritin, imperatorin, cimifugin, and glycyrrhizic acid. Furthermore, by employing an integrated analysis of network pharmacology and metabolomics, several instructive insights into pharmacological mechanisms have been gleaned. This includes the identification of key targets and pathways through which QHSSD exerts its crucial roles in the treatment of RA. Notably, the inhibitory effect of QHSSD on AKT1 and MAPK3 activation has been validated through western blot analysis, underscoring its potential to mitigate RA-related inflammatory responses. In summary, this research demonstrates the proposed strategy's feasibility and provides a practical reference model for the systematic investigation of CHM formulas.


Asunto(s)
Artritis Reumatoide , Medicamentos Herbarios Chinos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Biología de Sistemas , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Metabolómica
14.
J Ethnopharmacol ; 317: 116695, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37315651

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The present study aims to evaluate the efficacy of Venenum Bufonis (VBF), a traditional Chinese medicine derived from the dried secretions of the Chinese toad, in treating colorectal cancer (CRC). The comprehensive roles of VBF in CRC through systems biology and metabolomics approaches have been rarely investigated. AIMS OF THE STUDY: The study sought to uncover the potential underlying mechanisms of VBF's anti-cancer effects by investigating the impact of VBF on cellular metabolic balance. MATERIALS AND METHODS: An integrative approach combining biological network analysis, molecular docking and multi-dose metabolomics was used to predict the effects and mechanisms of VBF in CRC treatment. The prediction was verified by cell viability assay, EdU assay and flow cytometry. RESULTS: The results of the study indicate that VBF presents anti-CRC effects and impacts cellular metabolic balance through its impact on cell cycle-regulating proteins, such as MTOR, CDK1, and TOP2A. The results of the multi-dose metabolomics analysis suggest a dose-dependent reduction of metabolites related to DNA synthesis after VBF treatment, while the EdU and flow cytometry results indicate that VBF inhibits cell proliferation and arrests the cell cycle at the S and G2/M phases. CONCLUSIONS: These findings suggest that VBF disrupts purine and pyrimidine pathways in CRC cancer cells, leading to cell cycle arrest. This proposed workflow integrating molecular docking, multi-dose metabolomics, and biological validation, which contented EdU assay, cell cycle assay, provides a valuable framework for future similar studies.


Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Humanos , Farmacología en Red , Simulación del Acoplamiento Molecular , Metabolómica , Neoplasias Colorrectales/tratamiento farmacológico
15.
New Phytol ; 239(3): 1035-1050, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37219846

RESUMEN

Phytochromes are photoreceptors enabling plants to respond to various light conditions. Independent gene duplications resulted in small phytochrome families in mosses, ferns and seed plants. This phytochrome diversity is hypothesised to be critical for sensing and adapting to different light conditions, but experimental evidence for this idea is lacking for mosses and ferns. The moss model species Physcomitrium patens contains seven phytochromes grouped into three clades, PHY1/3, PHY2/4 and PHY5. Here, we used CRISPR/Cas9-generated single and higher order mutants to investigate their role in light regulation of protonema and gametophore growth, protonema branching and induction of gametophores. We found both specific and partially overlapping roles for the three phytochrome clades in regulating these responses in different light conditions. PHY1/3 clade phytochromes act as primary far-red light receptors, while PHY5 clade phytochromes are the primary red light receptors. PHY2/4 clade phytochromes have functions in both red and far-red light. We also observed that PHY1/3 and PHY2/4 clade phytochromes promote gametophore growth in simulated canopy shade and also play a role in blue light. Similar to seed plants, gene duplications in the phytochrome lineage in mosses were followed by functional diversification into red and far-red light-sensing phytochromes.


Asunto(s)
Briófitas , Bryopsida , Helechos , Fitocromo , Fitocromo/genética , Bryopsida/genética , Plantas
16.
Mater Horiz ; 10(7): 2579-2586, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37092183

RESUMEN

Two-dimensional (2D) material-based photodetectors, especially those working in the infrared band, have shown great application potential in the thermal imaging, optical communication, and medicine fields. Designing 2D material photodetectors with broadened detection band and enhanced responsivity has become an attractive but challenging research direction. To solve this issue, we report a zirconium trisulfide (ZrS3) infrared photodetector with enhanced and broadened response with the assistance of the synergistic effects of extrinsic photoconduction and photogating effect. The ZrS3 photodetectors can detect infrared light up to 2 µm by extrinsic photoconduction and exhibit a responsivity of 100 mA W-1 under 1550 nm illumination. Furthermore, the ZrS3 infrared photodetectors with an oxide layer show a triple enhanced responsivity due to the photogating effect. Additionally, the infrared imaging capability of the ZrS3 infrared photodetectors is also demonstrated. This work provides a potential way to extend the response range and improve the responsivity for nanomaterial-based photodetectors at the same time.

17.
J Pharm Anal ; 13(2): 187-200, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36908857

RESUMEN

Epidemiological and animal studies indicate that pre-existing diabetes increases the risk of Parkinson's disease (PD). However, the mechanisms underlying this association remain unclear. In the present study, we found that high glucose (HG) levels in the cerebrospinal fluid (CSF) of diabetic rats might enhance the effect of a subthreshold dose of the neurotoxin 6-hydroxydopamine (6-OHDA) on the development of motor disorders, and the damage to the nigrostriatal dopaminergic neuronal pathway. In vitro, HG promoted the 6-OHDA-induced apoptosis in PC12 cells differentiated to neurons with nerve growth factor (NGF) (NGF-PC12). Metabolomics showed that HG promoted hyperglycolysis in neurons and impaired tricarboxylic acid cycle (TCA cycle) activity, which was closely related to abnormal mitochondrial fusion, thus resulting in mitochondrial loss. Interestingly, HG-induced upregulation of pyruvate kinase M2 (PKM2) combined with 6-OHDA exposure not only mediated glycolysis but also promoted abnormal mitochondrial fusion by upregulating the expression of MFN2 in NGF-PC12 cells. In addition, we found that PKM2 knockdown rescued the abnormal mitochondrial fusion and cell apoptosis induced by HG+6-OHDA. Furthermore, we found that shikonin (SK), an inhibitor of PKM2, restored the mitochondrial number, promoted TCA cycle activity, reversed hyperglycolysis, enhanced the tolerance of cultured neurons to 6-OHDA, and reduced the risk of PD in diabetic rats. Overall, our results indicate that diabetes promotes hyperglycolysis and abnormal mitochondrial fusion in neurons through the upregulation of PKM2, leading to an increase in the vulnerability of dopaminergic neurons to 6-OHDA. Thus, the inhibition of PKM2 and restoration of mitochondrial metabolic homeostasis/pathways may prevent the occurrence and development of diabetic PD.

18.
Comput Biol Med ; 154: 106607, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731363

RESUMEN

Network pharmacology is widely used to predict the mechanism of traditional Chinese medicines (TCM), but the framework in traditional network pharmacology analysis ignores the relationship between the concentration of components and drug efficacy. Lanqin oral solution (LOS) is a TCM formulation that widely used in the clinical treatment of pharyngitis, but its pharmacodynamic mechanism is still unknown. The present study was designed to elaborate the anti-inflammatory mechanism of LOS based on the quality markers (Q-markers). The efficacy of LOS was correlated with the fingerprint common peaks by chemometrics to select key peaks, and the Q-markers were further confirmed by mass spectrometry. Network pharmacology analysis was performed based on the chosen Q-markers to elaborate the potential pharmacodynamic mechanisms. Four efficacy-related chromatographic peaks were screened by the novel competitive adaptive reweighted sampling (CARS) spectrum-effect relationship analysis and series of other chemometrics methods. Four peaks were further characterized as the Q-markers in the LOS by mass spectrometry, i.e., geniposide, berberine, palmatine and baicalin. The ingredient-target network demonstrated that the LOS showed more impact on the NF-κB signaling pathway to elicit anti-inflammatory ability. Overall, the present study has introduced CARS into the spectrum-effect relationship analysis for the first time, which complemented the commonly applied chemometric methods. The network established based on the screened Q-markers was highly interpretable and successfully achieved the prediction of the anti-inflammatory mechanism of LOS. The proposed workflow provides a systematic method for exploring the mechanism of TCM based on identifying efficacy indicators. More importantly, it offers a reference for clarifying the mechanisms for other TCM formulations.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/farmacología , Farmacología en Red , Medicina Tradicional China , Antiinflamatorios/farmacología
19.
Chem Soc Rev ; 52(5): 1650-1671, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744507

RESUMEN

The fabrication of wafer-scale two-dimensional (2D) materials is a prerequisite and important step for their industrial applications. Chemical vapor deposition (CVD) is the most promising approach to produce high-quality films in a scalable way. Recent breakthroughs in the epitaxy of wafer-scale single-crystalline graphene, hexagonal boron nitride, and transition-metal dichalcogenides highlight the pivotal roles of substrate engineering by lattice orientation, surface steps, and energy considerations. This review focuses on the existing strategies and underlying mechanisms, and discusses future directions in epitaxial substrate engineering to deliver wafer-scale 2D materials for integrated electronics and photonics.

20.
Mil Med Res ; 10(1): 7, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36814339

RESUMEN

BACKGROUND: Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has been considered an emerging and potentially toxic pollutant in recent years. Long-term exposure to TCS has been suggested to exert endocrine disruption effects, and promote liver fibrogenesis and tumorigenesis. This study was aimed at clarifying the underlying cellular and molecular mechanisms of hepatotoxicity effect of TCS at the initiation stage. METHODS: C57BL/6 mice were exposed to different dosages of TCS for 2 weeks and the organ toxicity was evaluated by various measurements including complete blood count, histological analysis and TCS quantification. Single cell RNA sequencing (scRNA-seq) was then carried out on TCS- or mock-treated mouse livers to delineate the TCS-induced hepatotoxicity. The acquired single-cell transcriptomic data were analyzed from different aspects including differential gene expression, transcription factor (TF) regulatory network, pseudotime trajectory, and cellular communication, to systematically dissect the molecular and cellular events after TCS exposure. To verify the TCS-induced liver fibrosis, the expression levels of key fibrogenic proteins were examined by Western blotting, immunofluorescence, Masson's trichrome and Sirius red staining. In addition, normal hepatocyte cell MIHA and hepatic stellate cell LX-2 were used as in vitro cell models to experimentally validate the effects of TCS by immunological, proteomic and metabolomic technologies. RESULTS: We established a relatively short term TCS exposure murine model and found the TCS mainly accumulated in the liver. The scRNA-seq performed on the livers of the TCS-treated and control group profiled the gene expressions of > 76,000 cells belonging to 13 major cell types. Among these types, hepatocytes and hepatic stellate cells (HSCs) were significantly increased in TCS-treated group. We found that TCS promoted fibrosis-associated proliferation of hepatocytes, in which Gata2 and Mef2c are the key driving TFs. Our data also suggested that TCS induced the proliferation and activation of HSCs, which was experimentally verified in both liver tissue and cell model. In addition, other changes including the dysfunction and capillarization of endothelial cells, an increase of fibrotic characteristics in B plasma cells, and M2 phenotype-skewing of macrophage cells, were also deduced from the scRNA-seq analysis, and these changes are likely to contribute to the progression of liver fibrosis. Lastly, the key differential ligand-receptor pairs involved in cellular communications were identified and we confirmed the role of GAS6_AXL interaction-mediated cellular communication in promoting liver fibrosis. CONCLUSIONS: TCS modulates the cellular activities and fates of several specific cell types (including hepatocytes, HSCs, endothelial cells, B cells, Kupffer cells and liver capsular macrophages) in the liver, and regulates the ligand-receptor interactions between these cells, thereby promoting the proliferation and activation of HSCs, leading to liver fibrosis. Overall, we provide the first comprehensive single-cell atlas of mouse livers in response to TCS and delineate the key cellular and molecular processes involved in TCS-induced hepatotoxicity and fibrosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Triclosán , Humanos , Ratones , Animales , Transcriptoma , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ligandos , Proteómica , Ratones Endogámicos C57BL , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Fibrosis , Enfermedad Hepática Inducida por Sustancias y Drogas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...