Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(23): e202403464, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38581155

RESUMEN

Herein, two atomically precise silver nanoclusters, Ag54 and Ag33, directed by inner anion templates (CrO4 2- and/or Cl-), are initially isolated as a mixed phase from identical reactants across a wide temperature range (20-80 °C). Interestingly, fine-tuning the reaction temperature can realize pure phase synthesis of the two nanoclusters; that is, a metastable Ag54 is kinetically formed at a low temperature (20 °C), whereas such a system is steered towards a thermodynamically stable Ag33 at a relatively high temperature (80 °C). Electrospray ionization mass spectrometry illustrates that the stability of Ag33 is superior to that of Ag54, which is further supported by density functional theory calculations. Importantly, the difference in structural stability can influence the pathway of 1,4-bis(pyrid-4-yl)benzene induced transformation reaction starting from Ag54 and Ag33. The former undergoes a dramatic breakage-reorganization process to form an Ag31 dimer (Ag31), while the same product can be also achieved from the latter following a noninvasive ligand exchange process. Both the Ag54 and Ag33 have the potential for further remote laser ignition applications. This work not only demonstrates how temperature controls the isolation of a specific phase, but also sheds light on the structural transformation pathway of nanoclusters with different stability.

2.
Int J Oncol ; 59(1)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34080667

RESUMEN

Doxorubicin is one of the most frequently used chemotherapy drugs in the treatment of osteosarcoma (OS), but the emergence of chemoresistance often leads to treatment failure. C­X­C motif chemokine receptor 4 (CXCR4) has been demonstrated to regulate OS progression and metastasis. However, whether CXCR4 is also involved in OS chemoresistance and its molecular mechanisms has yet to be fully elucidated. In the present study, CXCR4­mediated autophagy for OS chemotherapy was investigated by western blot analysis, transmission electron microscopy and confocal microscopy. CXCR4 silencing enhanced doxorubicin­induced apoptosis by reducing P­glycoprotein in CXCR4+ LM8 cells, while CXCR4 overexpression promoted OS doxorubicin resistance in CXCR4­ Dunn cells. Furthermore, CXCR4 silencing with or without doxorubicin increased the expression of beclin 1 and light chain 3B, and the number of autophagosomes and autolysosomes, as well as induced autophagic flux activation by suppressing the PI3K/AKT/mTOR signaling pathway. In addition, pretreatment with the autophagy inhibitor bafilomycin A1 attenuated CXCR4 abrogation­induced cell death. Finally, the CXCR4 antagonist AMD3100 synergistically reinforced the antitumor effect of doxorubicin in an orthotopic OS mouse model. Taken together, the present study revealed that CXCR4 inhibition sensitizes OS to doxorubicin by inducing autophagic cell death. Therefore, targeting the CXCR4/autophagy axis may be a promising therapeutic strategy to overcome OS chemotherapy resistance.


Asunto(s)
Bencilaminas/administración & dosificación , Neoplasias Óseas/tratamiento farmacológico , Ciclamas/administración & dosificación , Doxorrubicina/administración & dosificación , Osteosarcoma/tratamiento farmacológico , Receptores CXCR4/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Muerte Celular Autofágica/efectos de los fármacos , Bencilaminas/farmacología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclamas/farmacología , Doxorrubicina/farmacología , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Osteosarcoma/metabolismo , Osteosarcoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Dalton Trans ; 50(21): 7484-7495, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33970979

RESUMEN

Nowadays, although the exploration of proton conductive materials has ranged from traditional sulfonated polymers to novel crystalline solid materials such as MOFs, COFs, and HOFs, research on crystalline cluster-based organic framework materials is very limited. Here, a pair of homologues Cu(i)-based organic framework containing a Cu12S6 cluster, [Cu12(MES)6(H2O)3]n (1) and {[Cu12(MPS)6(H2O)4]·6H2O}n (2) (H2MES = 2-mercaptoethanesulfonate acid and H2MPS = 2-mercaptoethanesulfonate acid), were hydrothermally synthesized under the same conditions and fully investigated for their proton conduction. Their structures were characterized by means of single-crystal X-ray diffraction, elemental analysis, thermogravimetric analyses, and PXRD measurements. The two MOFs show significant structural differences in the topological fashions. MOF 1 has a three-dimensional network and can be simplified into two topology types: a 10-connected gpu structure with a Schläfli symbol (312·426·57) and a 3,12-connected new topology with a point symbol {3·42}2{310·418·519·614·74·9}. MOF 2 also has a three-dimensional framework and topology as a 6-connected pcu primitive cubic network with a Schläfli symbol {412·63}. The two MOFs show different proton conduction parameters, but both indicate temperature-dependent proton conductive features. Intriguingly, the two MOFs exhibit high water stability and their proton conductivities are 3.63 × 10-5 and 2.75 × 10-5 S cm-1 under 333 K and 98% RH, respectively. The suggested mechanism for the synthesis for 1 and 2, and their proton conductivity performance comparison has been discussed in detail. In addition, Hirshfeld surface and fingerprint analysis on the two MOFs were computed to compare contacts between the molecules, which is essential for analyzing the relationships between their hydrogen bonds and proton conductivity properties.

4.
Dalton Trans ; 49(32): 11129-11141, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32743621

RESUMEN

A pair of homologues, [Zn(Hssa)(1,4-bib)·H2O]n (1) and [Zn3(ssa)2(1,4-bib)3·4H2O]n (2), were successfully assembled using the same metals and ligands [H3ssa = 5-sulfosalicylic acid; 1,4-bib = 1,4-bis(1H-imidazol-1-yl)benzene] under solvothermal conditions. Polymer 1 is a two-dimensional (2D) sql network and polymer 2 is a three-dimensional (3D) framework. Polymer 2 can be simplified into two topology types: bct and tfc. The two polymers show significant differences in the fluorescence sensing of metal ions and proton conductivity. Their applications in detecting metal ions and proton conductivity were explored. Polymer 1 shows high sensitivity and selectivity for Fe3+, while polymer 2 can detect Hg2+ ions. The limit of detection was 1.66 µM with Fe3+ for 1 and 0.23 µM with Hg2+ for 2 in water. In addition, both 1 and 2 exhibit high water stability and proton conductivity. At 60 °C and 95% relative humidity, their conductivities were 3.45 × 10-5 and 6.26 × 10-6 S cm-1, respectively. A detailed analysis of the Hirshfeld surface and fingerprints was carried out for 1 and 2 to compare the interactions between the molecules, which is essential for analysing the relationship between their structures and material properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...