Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 18(1): 162-169, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35799537

RESUMEN

We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique. Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury; as a result, in this study, we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration. First, in an in vitro biomimetic microenvironment, we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells. We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells. The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique. Compared with epithelium sutures and small gap sleeve bridging alone, the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level.

2.
Neural Regen Res ; 17(1): 228-232, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34100460

RESUMEN

In the conventional view a muscle is composed of intermediate structures before its further division into microscopic muscle fibers. Our experiments in mice have confirmed this intermediate structure is composed of the lamella cluster formed by motor endplates, the innervating nerve branches and the corresponding muscle fibers, which can be viewed as an independent structural and functional unit. In this study, we verified the presence of these muscle construction units in rabbits. The results showed that the muscular branch of the femoral nerve sent out 4-6 nerve branches into the quadriceps and the tibial nerve sent out 4-7 nerve branches into the gastrocnemius. When each nerve branch of the femoral nerve was stimulated from the most lateral to the medial, the contraction of the lateral muscle, intermediate muscle and medial muscle of the quadriceps could be induced by electrically stimulating at least one nerve branch. When stimulating each nerve branch of the tibial nerve from the lateral to the medial, the muscle contraction of the lateral muscle 1, lateral muscle 2, lateral muscle 3 and medial muscle of the gastrocnemius could be induced by electrically stimulating at least one nerve branch. Electrical stimulation of each nerve branch resulted in different electromyographical waves recorded in different muscle subgroups. Hematoxylin-eosin staining showed most of the nerve branches around the neuromuscular junctions consisted of one individual neural tract, a few consisted of two or more neural tracts. The muscles of the lower limb in the rabbit can be subdivided into different muscle subgroups, each innervated by different nerve branches, thereby allowing much more complex muscle activities than traditionally stated. Together, the nerve branches and the innervated muscle subgroups can be viewed as an independent structural and functional unit. This study was approved by the Animal Ethics Committee of Peking University People's Hospital (approval No. 2019PHE027) on October 20, 2019.

3.
Chin Med J (Engl) ; 134(5): 532-538, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33560666

RESUMEN

BACKGROUND: Models to predict mortality in trauma play an important role in outcome prediction and severity adjustment, which informs trauma quality assessment and research. Hospitals in China typically use the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) to describe injury. However, there is no suitable prediction model for China. This study attempts to develop a new mortality prediction model based on the ICD-10-CM lexicon and a Chinese database. METHODS: This retrospective study extracted the data of all trauma patients admitted to the Beijing Red Cross Emergency Center, from January 2012 to July 2018 (n = 40,205). We used relevant predictive variables to establish a prediction model following logistic regression analysis. The performance of the model was assessed based on discrimination and calibration. The bootstrapping method was used for internal validation and adjustment of model performance. RESULTS: Sex, age, new region-severity codes, comorbidities, traumatic shock, and coma were finally included in the new model as key predictors of mortality. Among them, coma and traumatic shock had the highest scores in the model. The discrimination and calibration of this model were significant, and the internal validation performance was good. The values of the area under the curve and Brier score for the new model were 0.9640 and 0.0177, respectively; after adjustment of the bootstrapping method, they were 0.9630 and 0.0178, respectively. CONCLUSIONS: The new model (China Mortality Prediction Model in Trauma based on the ICD-10-CM lexicon) showed great discrimination and calibration, and performed well in internal validation; it should be further verified externally.


Asunto(s)
Clasificación Internacional de Enfermedades , Heridas y Lesiones , Beijing , China , Humanos , Valor Predictivo de las Pruebas , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA