Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(2): 247-250, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638429

RESUMEN

The authors demonstrate the enhanced light output from 275-nm AlGaN-based deep ultraviolet (DUV) light-emitting diode (LED) structures via the in-plane modulation of shallow photonic crystal (PC) patterns that were fabricated on the p-AlGaN contact layer surface. The employed PC lattice constants are in the range of 270-780 nm, much larger than the fundamental Bragg order lattice constant (∼95 nm). As compared to the unpatterned sample, the intensity of the top (or bottom) emission can be enhanced by up to 331% (or 246%), attributed to the high-order coherent diffraction of the internal trapped light and also the Purcell enhancement of spontaneous emission. The findings in this Letter suggest an easier way for the realization of more energy-efficient DUV LEDs which offer the advantage of high emission for various applications in disinfection and sterilization.

2.
Sci Rep ; 9(1): 8796, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217468

RESUMEN

Implementing selective-area p-type doping through ion implantation is the most attractive choice for the fabrication of GaN-based bipolar power and related devices. However, the low activation efficiency of magnesium (Mg) ions and the inevitable surface decomposition during high-temperature activation annealing process still limit the use of this technology for GaN-based devices. In this work, we demonstrate successful p-type doping of GaN using protective coatings during a Mg ion implantation and thermal activation process. The p-type conduction of GaN is evidenced by the positive Seebeck coefficient obtained during thermopower characterization. On this basis, a GaN p-i-n diode is fabricated, exhibiting distinct rectifying characteristics with a turn-on voltage of 3 V with an acceptable reverse breakdown voltage of 300 V. Electron beam induced current (EBIC) and electroluminescent (EL) results further confirm the formation of p-type region due to Mg ion implantation and subsequent thermal activation. This repeatable and uniform manufacturing process can be implemented in mass production of GaN devices for versatile power and optoelectronic applications.

3.
Nano Lett ; 18(6): 3414-3420, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29781625

RESUMEN

Semiconductor nanowire (NW) lasers have attracted considerable research effort given their excellent promise for nanoscale photonic sources. However, NW lasers currently exhibit poor directionality and high threshold gain, issues critically limiting their prospects for on-chip light sources with extremely reduced footprint and efficient power consumption. Here, we propose a new design and experimentally demonstrate a vertically emitting indium phosphide (InP) NW laser structure showing high emission directionality and reduced energy requirements for operation. The structure of the laser combines an InP NW integrated in a cat's eye (CE) antenna. Thanks to the antenna guidance with broken asymmetry, strong focusing ability, and high Q-factor, the designed InP CE-NW lasers exhibit a higher degree of polarization, narrower emission angle, enhanced internal quantum efficiency, and reduced lasing threshold. Hence, this NW laser-antenna system provides a very promising approach toward the achievement of high-performance nanoscale lasers, with excellent prospects for use as highly localized light sources in present and future integrated nanophotonics systems for applications in advanced sensing, high-resolution imaging, and quantum communications.

4.
Sci Rep ; 6: 23486, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27000419

RESUMEN

Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications.

5.
Opt Express ; 22(13): 15949-56, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24977850

RESUMEN

The enhancement of photo-response in nanometer-scale germanium photodetectors through bull's eye antennas capable of supporting 2nd-order Bloch surface plasmon modes is demonstrated in theory and experiment. A detailed numerical investigation reveals that the presence of surface wave and its constructive interference with the directly incident light are incorporated into the main mechanisms for enhancing transmission through the central nanoaperture. With a grating period of 1500 nm, the area-normalized responsivity can be enhanced up to 3.8 times at 2 V bias for a 780 nm laser. It provides an easier fabrication path for ultra-short wavelength operations especially in devices using optically denser materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...