Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(8): 2241-2246, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38380809

RESUMEN

The structural configuration of thiolate-protected gold nanoclusters plays a pivotal role in elucidating the correlation between their structure and properties, comprehending their stability, and guiding experimental synthesis. In this study, utilizing the grand unified model and the ring model, we employed an innovative strategy of fusing triangular Au3 and tetrahedral Au4 elementary blocks by sharing a gold atom to design the gold core, predicting the structure of the Au40(SR)24 nanoclusters. Density functional theory calculations indicate that with the protective ligands simplified to methyl groups the energy of the predicted Au40(SR)24 is 0.45 eV lower than that of the experimentally reported Au40(o-MBT)24 nanoclusters, implying its substantial stability. Furthermore, the calculated UV absorption spectrum and circular dichroism spectrum of predicted Au40(SR)24 are consistent with the experimental results of Au40(SC2H4Ph)24 nanoclusters, suggesting that the predicted structure is a likely candidate for the structure of Au40(SC2H4Ph)24 nanoclusters.

2.
J Phys Chem Lett ; 14(51): 11558-11564, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38096134

RESUMEN

Gold nanoclusters protected by thiolate ligands are ideal models for investigating the structure-property correlation of nanomaterals. Introducing relatively weak coordinating ligands into gold thiolate nanoclusters and thus reforming their structures is beneficial for further releasing their activities. However, controlling the selectivity of the process is a challenging task. In this work, we report a cascade strategy for deeply and purposefully reforming the structures of gold thiolate nanoclusters, exemplified by a Au13-kerneled Au23 nanocluster. Specifically, weakly coordinated triphenylphosphine was utilized to reduce (activate) the surface of Au23, enabling its further structural reformation by the following oxidation step. A structurally distinctive Au20 nanocluster was obtained based on this reduction-oxidation cascade strategy. Mechanism studies reveal that both the reduction and oxidation steps and their working sequence are critical for the transformation. Theoretical and experimental results all indicate that the deep structural reformation results in the evolution of the electronic and photoluminescent properties of the gold thiolate nanocluster.

3.
Inorg Chem ; 62(49): 20450-20457, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009722

RESUMEN

Thiolate-protected gold nanoclusters, with unique nuclearity- and structure-dependent properties, have been extensively used in energy conversion and catalysis; however, the mystery between kernel structures and properties remains to be revealed. Here, the influence of core packing on the electronic structure, vibrational properties, and excited-state dynamics of four gold nanoclusters with various kernel structures is explored using density functional theory combined with time-domain nonadiabatic molecular dynamics simulations. We elucidate the correlation between the geometrical structure and excited-state dynamics of gold nanoclusters. The distinct carrier lifetimes of the four nanoclusters are attributed to various electron-phonon couplings arising from the different vibrational properties caused by core packing. We have identified specific phonon modes that participate in the electron-hole recombination dynamics, which are related to the gold core of nanoclusters. This study paints a physical picture from the geometric configuration, electronic structure, vibrational properties, and carrier lifetime of these nanoclusters, thereby facilitating their potential application in optoelectronic materials.

4.
Dalton Trans ; 52(48): 18442-18448, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010928

RESUMEN

Elucidating the structure-property relationships of ultra-small metal nanocluster with basic nuclear is of great significance for understanding the evolution mechanism in both the structures and properties of polynuclear metal nanoclusters. In this study, an ultra-small copper hydride (CuH for short) nanocluster was simply synthesized with high yield, and the large-scale preparation was also achieved. Single crystal X-ray diffractometer (SC-XRD) analysis shows that this copper NC contains a tetrahedral Cu4 core co-capped by four PPh2Py ligands and two Cl in which the existence of the central H atom in tetrahedron was further identified experimentally and theoretically. This CuH nanocluster exhibits bright yellow emission, which is proved to be the mixture of phosphorescence and fluorescence by the sensitivity of both emission intensity and lifetime to O2. Furthermore, the temperature-dependent emission spectra and density functional theory (DFT) calculations suggest that the luminescence of CuH mainly originates from the metal-to-ligand charge transfer and cluster-centered triplet excited states. This work offers new insights into understanding the structure-property relationship of basic nuclear CuH nanocluster.

5.
Nanoscale ; 15(36): 14906-14911, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37654188

RESUMEN

The interface engineering of two-dimensional transition metal dichalcogenides (2D-TMDs) and metals has been regarded as a promising strategy to modulate their outstanding electrical and optoelectronic properties. Chemical Vapour Deposition (CVD) is an effective strategy to regulate the contact interface between TMDs and metals via directly growing 2D TMDs on a 3D metal substrate. Nevertheless, the underlying mechanisms of interfacial phase formation and evolution during TMD growth on a metallic substrate are less known. In this work, we found a 2D non-van der Waals (vdW) Mo-rich phase (MoNSN+1) during thermal sulfidation of a Mo-Au surface alloy to molybdenum disulfide (MoS2) in a S-poor environment. Systematic atomic-scale observations reveal that the periodic Mo and S atomic layers are arranged separating from each other in the non-vdW Mo-rich phase, and the Mo-rich phase preferentially nucleates between outmost 2D MoS2 and a 3D nanostructured Au substrate which possesses copious surface steps and kinks. Theoretical calculations demonstrate that the appearance of the Mo-rich phase with a unique metallic nature causes an n-type contact interface with an ultralow transition energy barrier height. This study may help understand the formation mechanism of the interfacial second phase during the epitaxial growth of 2D-TMDs on 3D nanostructured metals, and provide a new approach to tune the Schottky barrier height by the design of the interfacial phase structure at the heterojunction.

6.
J Phys Chem Lett ; 14(34): 7632-7637, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37602763

RESUMEN

Structural global searches employing highly efficient algorithms have been extensively applied for studying molecules and clusters. However, the code-aided spatial conformational determination of thiolated gold nanoclusters (AuNCs) has not been accomplished because of the complex structural architecture of AuNCs, especially when only the chemical formula of the cluster is known. Experiments have shown that the star [Au25(SR)18]-1 cluster can transform into the [Au25(SR)19]0 cluster. However, the crystal structure of the [Au25(SR)19]0 cluster has not been experimentally determined, and theoretical structural predictions for this cluster are challenging because no template cluster presents for [Au25(SR)19]0. Utilizing the grand unified model, this study succeeded in obtaining the structure of the [Au25(SR)19]0 cluster by using minimal computations, which was verified to be reasonable through stability analysis and experimental absorption spectrum confirmation. Although the predicted [Au25(SR)19]0 cluster has the same number of Au atoms as the [Au25(SR)18]-1 cluster, the structure is considerably altered, owing to the presence of a face-centered cubic kernel. This study provides insights for decoding the chemical formulas of AuNCs to determine their spatial conformations.

7.
Nanoscale Adv ; 5(17): 4464-4469, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37638170

RESUMEN

The knowledge of structural evolution among thiolate-protected gold nanoclusters is not only helpful for understanding their structure-property relationship but also provides scientific evidence to rule-guided structure predictions of gold nanoclusters. In this paper, three new atomic structures of medium-sized thiolate-protected gold nanoclusters, i.e. Au44(SR)30, Au56(SR)32, and Au60(SR)34, are predicted based on the grand unified model and ring model. Two structural evolution rules, i.e., Au44(SR)28 + [Au12(SR)4] → Au56(SR)32 + [Au12(SR)4] → Au68(SR)36 and Au44(SR)30 + [Au8(SR)2] → Au52(SR)32 + [Au8(SR)2] → Au60(SR)34 + [Au8(SR)2] → Au68(SR)36, are explored. The generic growth patterns underlying both sequences of nanoclusters can be viewed as sequential addition of four and three highly stable tetrahedral Au4 units on the cores, respectively. In addition, density functional theory calculations show that these three newly predicted gold nanoclusters have very close formation energies with their adjacent structures, large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, and all-positive harmonic vibration frequencies, indicating their high stabilities.

8.
Nanotechnology ; 34(10)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36537747

RESUMEN

Understanding the excited state behavior of isomeric structures of thiolate-protected gold nanoclusters is still a challenging task. In this paper, based on grand unified model and ring model for describing thiolate-protected gold nanoclusters, we have predicted four isomers of Au24(SR)16nanoclusters. Density functional theory calculations show that the total energy of one of the predicted isomers is 0.1 eV lower in energy than previously crystallized isomer. The nonradiative relaxation dynamics simulations of Au24(SH)16isomers are performed to reveal the effects of structural isomerism on relaxation process of the lowest energy states, in which that most of the low-excited states consist of core states. In addition, crystallized isomer possesses the shorter e-h recombination time, whereas the most stable isomer has the longer recombination time, which may be attributed to the synergistic effect of nonadiabatic coupling and decoherence time. Our results could provide practical guidance to predict new gold nanoclusters for future experimental synthesis, and stimulate the exploration of atomic structures of same sized gold nanoclusters for photovoltaic and optoelectronic devices.

9.
J Am Chem Soc ; 144(41): 18976-18985, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36197785

RESUMEN

Despite much effort being devoted to the study of ionic aqueous solutions at the nanoscale, our fundamental understanding of the microscopic kinetic and thermodynamic behaviors in these systems remains largely incomplete. Herein, we reported the first 10 µs molecular dynamics simulation, providing evidence of the spontaneous formation of monolayer hexagonal honeycomb hydrated salts of XCl2·6H2O (X = Ba, Sr, Ca, and Mg) from electrolyte aqueous solutions confined in an angstrom-scale slit under ambient conditions. By using both the classical molecular dynamics simulations and the first-principles Born-Oppenheimer molecular dynamics simulations, we further demonstrated that the hydrated salts were stable not only at ambient temperature but also at elevated temperatures. This phenomenon of formation of hydrated salt in water is contrary to the conventional view. The free energy calculations and dehydration analyses indicated that the spontaneous formation of hydrated salts can be attributed to the interplay between ion hydration and Coulombic attractions in the highly confined water. In addition to providing molecular-level insights into the novel behavior of ionic aqueous solutions at the nanoscale, our findings may have implications for the future exploration of potential existence of water molecules in the saline deposits on hot planets.


Asunto(s)
Nanoporos , Sales (Química) , Simulación de Dinámica Molecular , Agua , Iones
10.
Nanoscale Horiz ; 7(10): 1192-1200, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36039937

RESUMEN

Heteroatom substitution of gold nanoclusters enables precise tuning of their physicochemical properties at the single-atom level, which has a significant impact on the applications related to excited states including photovoltaics, photocatalysis and photo-luminescence. To this end, understanding the effect of metal exchange on the structures, electronic properties and photoexcited dynamic behavior of nanoclusters is imperative. Combining density functional theory with time-domain nonadiabatic molecular dynamics simulations, herein we explored the effect of metal replacement on the electronic and vibrational properties as well as excited-state dynamics of ligand-protected MAu24(SR)18 (M = Pd, Pt, Cd, and Hg) nanoclusters. At the atomistic level, we elucidate hot carrier relaxation and recombination dynamic behavior with various doping atoms. Such distinct excited-state behavior of MAu24(SR)18 nanoclusters is attributed to different energy gaps and electron-phonon coupling between the donor and acceptor energy levels, owing to the perturbation of nanoclusters by a single foreign atom. The specific phonon modes involved in excited-state dynamics have been identified, which are associated with the MAu12 core and ligand rings. This time-dependent excited-state dynamic study fills the gap between structure/composition and excited-state dynamic behavior of MAu24(SR)18 nanoclusters, which would stimulate the exploration of their applications in photoenergy storage and conversion.

11.
J Phys Chem Lett ; 13(24): 5387-5393, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35678557

RESUMEN

The charge states of thiolate-protected gold nanoclusters (AuNCs) are vital to their stabilities through affecting the number of the valence electrons. However, the origin of the charge states of AuNCs has not been fully understood yet. Herein, through fulfilling the duet-rule derived Au3(2e) and Au4(2e) elementary blocks in the grand unified model (GUM), analysis on the substantial crystal structures indicates the charge states of AuNCs can correlate with their core structural packing, especially the number of Au3(2e) elementary blocks. In addition, aided by the Au3(2e) block's role in tailoring the population of valence electron, three new AuNCs including Au18(SCH3)14, Au30(SCH3)20, and [Au30(SCH3)21]- are predicted through controllably specifying the exact number of Au3(2e) in the core. This work shows that GUM can bridge the gap among the charge states of the cluster, the inner core structure of the cluster, and the detachment of outer ligands via the electron counting rule.

12.
Phys Chem Chem Phys ; 24(26): 15920-15924, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758327

RESUMEN

This study presents thorough structural insights into the stability of crystallized Au22(SAdm)16 (HSAdm = 1-adamantanethiol) nanocluster. With the recently developed Ring Model for describing the interaction between inner gold cores and outer protecting ligands in thiolate-protected gold nanoclusters, the experimental spontaneous transformation from the crystallized Au22(SAdm)16 to Au21(SAdm)15 could be well understood as structurally unfavorable for the current Au22(SAdm)16 and could also be attributed to the weaker aurophilic interaction between the inner Au4 core and the surrounding rings in Au22(SAdm)16 over that in Au21(SAdm)15. Furthermore, with the Ring Model and the grand unified model, two new Au22(SCH3)16 isomers with evident lower energies, higher HOMO-LUMO gaps as well as distinct optical properties over the available crystallized isomer were obtained. This study deepens the current knowledge on the structure of the Au22(SR)16 cluster from a new structural point of view and also confirms the validity as well as practicability of the Ring Model in understanding and predicting the stable structures of thiolate-protected gold nanoclusters.

13.
Chem Commun (Camb) ; 58(33): 5092-5095, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35381055

RESUMEN

The intermolecular metallophilic interaction has been exploited to orderly aggregate nanocluster compounds into multidimensional assemblies, while the intramolecular metallophilic interaction was rarely reported. Herein, based on an Au13Cu2 nanocluster template, the presence of the intracluster Au-Cu metallophilic interaction was beneficial to achieving enhanced near-infrared emission intensity and thermal stability.

14.
J Phys Chem Lett ; 13(12): 2704-2710, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35302778

RESUMEN

Interests in subnanofluidic devices have called for molecular dynamics (MD) simulation studies of the thermodynamic behavior of monolayer salt solution within angstrom-scale slits. However, it still remains a grand challenge to accurately describe the Coulombic interactions by incorporating the effects of charge transfer and electronic dielectric screening. Herein, by using the electronic continuum model, where the effective ion charges are fine-tuned with a scaling factor of λ, we present simulation evidence that the effective Coulombic interactions among Na+/Cl- ions can strongly affect the behavior of monolayer ionic aqueous solution. Our microsecond-scale MD simulations show that only the counterions with moderate effective charges (0.3 ≤ λ ≤ 0.8) can dissolve in monolayer water, whereas the high effective charges (λ ≥ 0.85) induce ions to assemble into monolayer nanocrystals, and ions with the low effective charges (λ ≤ 0.2) exhibit gas-like nanobubble. These findings could provide deeper insights into the physical chemistry behind subnanofluidic iontronic devices.

15.
Nat Commun ; 13(1): 1235, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264573

RESUMEN

The growth of nanoparticles along one or two directions leads to anisotropic nanoparticles, but the nucleation (i.e., the formation of small seeds of specific shape) has long been elusive. Here, we show the total structure of a seed-sized Au56 nanoprism, in which the side Au{100} facets are surrounded by bridging thiolates, whereas the top/bottom {111} facets are capped by phosphine ligands at the corners and Br- at the center. The bromide has been proved to be the key to effectively stabilize the Au{111} to fulfill a complete face-centered-cubic core. In femtosecond electron dynamics analysis, the non-evolution of transient absorption spectra of Au56 is similar to that of larger-sized gold nanoclusters (n > 100), which is ascribed to the completeness of the prismatic Au56 core and an effective electron relaxation pathway created by the stronger Au-Au bonds inside. This work provides some insights for the understanding of plasmonic nanoprism formation.

16.
Chem Commun (Camb) ; 57(70): 8774-8777, 2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34378573

RESUMEN

Alloying is one of the most effective strategies to change the properties of inorganic-organic hybrid materials, but there are few reports of the alloying of one-dimensional nanowires with precise atomic structure due to the difficulties in obtaining the single crystals of nanowires themselves. Herein, we describe the synthesis and characterization of an alloyed one-dimensional Ag-Cu nanowire [Ag2.5Cu1.5(S-Adm)4]n. Compared with the unalloyed [Ag4(S-Adm)4]n, our novel alloyed nanowire exhibits good conductivity, and its resistivity (as a powder) was determined to be 107 Ω m by impedance analysis-consistent with that of a semiconductor. Accordingly, based on these properties combined with its excellent thermal stability and high-yielding, gram-scale synthesis, [Ag2.5Cu1.5(S-Adm)4]n is proposed for electronic-device applications.

17.
J Chem Phys ; 154(18): 184302, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241021

RESUMEN

The structure/composition of nanoclusters has a decisive influence on their physicochemical properties. In this work, we obtained two different Au-Ag nanoclusters, [Au9Ag12(SAdm)4(dppm)6Cl6]3+ and Au11Ag6(dppm)4(SAdm)4(CN)4, via controlling the Au/Ag molar ratios by a one-pot synthetic approach. The structure of nanoclusters was confirmed and testified by single-crystal x-ray diffraction, electrospray ionization time-of-flight mass spectrometry, XPS, powder x-ray diffraction, and electron paramagnetic resonance. The Au11Ag6 nanocluster possessed a M13 core caped by four Au atoms and four dppm and four AdmS ligands. Interestingly, four CN are observed to locate at the equator of the M13 core. Both nanoclusters contain a similar icosahedral M13 core, whereas their surface structures are totally different. However, the Au11Ag6 nanocluster exhibits good stability and strong red photoluminescence in solution.

18.
Chem Sci ; 12(9): 3290-3294, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34164098

RESUMEN

With atomically precise gold nanoclusters acting as a starting unit, substituting one or more gold atoms of the nanocluster with other metals has become an effective strategy to create metal synergy for improving catalytic performances and other properties. However, so far detailed insight into how to design the gold-based nanoclusters to optimize the synergy is still lacking, as atomic-level exchange between the surface-gold (or core-gold) and the incoming heteroatoms is quite challenging without changing other parts. Here we report a Cd-driven reconstruction of Au44(DMBT)28 (DMBT = 3,5-dimethylbenzenethiol), in which four Au2(DMBT)3 staples are precisely replaced by two Au5Cd2(DMBT)12 staples to form Au38Cd4(DMBT)30 with the face-centered cubic inner core retained. With the dual modifications of the surface and electronic structure, the Au38Cd4(DMBT)30 nanocluster exhibits distinct excitonic behaviors and superior photocatalytic performances compared to the parent Au44(DMBT)28 nanocluster.

19.
J Phys Chem A ; 125(27): 5933-5938, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34190555

RESUMEN

We present a [Au7(SR)7] ring as a new type of protection ligand in a new atomic structure of Au15(SR)13 nanocluster for the first time based on the ring model developed to understand how interfacial interaction dictates the structures of protection motifs and gold cores in thiolate-protected gold nanoclusters. This new Au15(SR)13 model shows a tetrahedral Au4 core protected by one [Au7(SR)7] ring and two [Au2(SR)3] "staple" motifs. Density functional theory (DFT) calculations show that the newly predicted Au15(SR)13 (R = CH3/Ph) has a lower energy of 0.24/0.68 eV than previously proposed isomers. By comparing calculated optical absorption spectra (UV), circular dichroism (CD) spectra, and powder X-ray diffraction (XRD) patterns with related experimental spectra, the calculated CD spectra of the newly predicted Au15(SR)13 (R = CH3/Ph) cannot reproduce the experimental results, indicating that the newly predicted Au15(SR)13 is a new structure that needs to be confirmed by experiment. In addition, DFT calculations also show that the newly predicted Au15(SR)13 (R = CH3/Ph) exhibits a large HOMO-LUMO gap, suggesting its high chemical stability. The proposition of the [Au7(SR)7] ring as a protection ligand in the newly predicted Au15(SR)13 not only enriches the types of protection ligands in thiolate-protected gold nanoclusters but also further confirms the effectiveness and rationality of the ring model for understanding the interfacial interaction between the protection motifs and gold cores in thiolate-protected gold nanoclusters.

20.
ACS Omega ; 6(15): 10497-10503, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34056202

RESUMEN

The atomic structures of 10-electron (10e) thiolate-protected gold nanoclusters have not received extensive attention both experimentally and theoretically. In this paper, five new atomic structures of 10e thiolate-protected gold nanoclusters, including three Au32(SR)22 isomers, one Au28(SR)18, and one Au33(SR)23, are theoretically predicted. Based on grand unified model (GUM), four Au17 cores with different morphologies can be obtained via three different packing modes of five tetrahedral Au4 units. Then, five complete structures of three Au32(SR)22 isomers, one Au28(SR)18, and one Au33(SR)23 isomers can be formed by adding the thiolate ligands to three Au17 cores based on the interfacial interaction between thiolate ligands and gold core in known gold nanoclusters. Density functional theory calculations show that the relative energies of three newly predicted Au32(SR)22 isomers are quite close to two previously reported isomers. In addition, five new 10e gold nanoclusters have large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and all-positive harmonic vibration frequencies, indicating their high stabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...