Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Surg Radiol Anat ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743143

RESUMEN

PURPOSE: Selective tibial neurotomy (STN) is a surgical procedure for treating spastic equinovarus foot. Hyperselective neurectomy (HSN) of tibial nerve is a modified STN procedure, which was rarely discussed. This study aimed to describe the branching patterns of the tibial nerve and propose an optimal surgical incision of HSN for treatment of spastic equinovarus foot. METHODS: Sixteen lower limbs were dissected to determine the various branching patterns of the tibial nerve and categorized according to these branching patterns. The mean distances from the nerve entry points to the tip of femur's medial epicondyle were measured, as well as their percentage to the overall length of the leg. The surgical incision was designed according to the range of these nerve entry points. RESULTS: The tibial nerve sent out proximal and distal motor branches based on their position relative to the soleus muscle's tendinous arch. For proximal motor branches, the branches innervating the medial gastrocnemius, lateral gastrocnemius and proximal soleus were categorized into types I (9/16), II (5/16) and III (2/16). Measurements from the medial epicondyle to the nerve entry points into the medial gastrocnemius, lateral gastrocnemius and proximal soleus ranged from 14 to 33 mm (4-9% of leg length), 22-45 mm (6-12%) and 35-81 mm (10-22%), respectively. Distal motor branches including the distal soleus, posterior tibialis, flexor digitorum longus and flexor hallucis longus, were classified as types A (8/14), B (4/14) and C (2/14), with the distances from their respective terminal points to the medial epicondyle were 67-137 mm (19-39%), 74-125 mm (20-35%), 116-243 mm (33-69%) and 125-272 mm (35-77%). CONCLUSIONS: The motor branches of tibial nerve were classified into two groups and each subdivided into three types. Detailed location parameters may serve as an anatomical basis for designing incision of HSN.

2.
BMC Surg ; 24(1): 64, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368360

RESUMEN

BACKGROUND: This study aims to assess the recovery patterns and factors influencing outcomes in patients with common peroneal nerve (CPN) injury. METHODS: This retrospective study included 45 patients with CPN injuries treated between 2009 and 2019 in Jing'an District Central Hospital. The surgical interventions were categorized into three groups: neurolysis (group A; n = 34 patients), nerve repair (group B; n = 5 patients) and tendon transfer (group C; n = 6 patients). Preoperative and postoperative sensorimotor functions were evaluated using the British Medical Research Council grading system. The outcome of measures included the numeric rating scale, walking ability, numbness and satisfaction. Receiver operating characteristic (ROC) curve analysis was utilized to determine the optimal time interval between injury and surgery for predicting postoperative foot dorsiflexion function, toe dorsiflexion function, and sensory function. RESULTS: Surgical interventions led to improvements in foot dorsiflexion strength in all patient groups, enabling most to regain independent walking ability. Group A (underwent neurolysis) had significant sensory function restoration (P < 0.001), and three patients in Group B (underwent nerve repair) had sensory improvements. ROC analysis revealed that the optimal time interval for achieving M3 foot dorsiflexion recovery was 9.5 months, with an area under the curve (AUC) of 0.871 (95% CI = 0.661-1.000, P = 0.040). For M4 foot dorsiflexion recovery, the optimal cut-off was 5.5 months, with an AUC of 0.785 (95% CI = 0.575-0.995, P = 0.020). When using M3 toe dorsiflexion recovery or S4 sensory function recovery as the gold standard, the optimal cut-off remained at 5.5 months, with AUCs of 0.768 (95% CI = 0.582-0.953, P = 0.025) and 0.853 (95% CI = 0.693-1.000, P = 0.001), respectively. CONCLUSIONS: Our study highlights the importance of early surgical intervention in CPN injury recovery, with optimal outcomes achieved when surgery is performed within 5.5 to 9.5 months post-injury. These findings provide guidance for clinicians in tailoring treatment plans to the specific characteristics and requirements of CPN injury patients.


Asunto(s)
Nervio Peroneo , Neuropatías Peroneas , Humanos , Estudios Retrospectivos , Nervio Peroneo/cirugía , Nervio Peroneo/lesiones , Neuropatías Peroneas/cirugía , Procedimientos Neuroquirúrgicos
3.
Pharmacol Res Perspect ; 12(1): e1160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38174807

RESUMEN

TGF-ß is thought to be involved in the physiological functions of early organ development and pathological changes in substantial organ fibrosis, while studies around adipose tissue function and systemic disorders of glucolipid metabolism are still scarce. In this investigation, two animal models, aP2-SREBP-1c mice and ob/ob mice, were used. TGF-ß pathway showed up-regulated in the inguinal white adipose tissue (iWAT) of the two models. SB431542, a TGF-ß inhibitor, successfully increased inguinal white adipocyte size by more than 1.5 times and decreased the weight of Peripheral organs including liver, Spleen and Kidney to 73.05%/62.18%/73.23% of pre-administration weights. The iWAT showed elevated expression of GLUTs and lipases, followed by a recovery of circulation GLU, TG, NEFA, and GLYCEROL to the wild-type levels in aP2-SREBP-1c mice. In contrast, TGF-ß inhibition did not have similar effects on that of ob/ob mice. In vitro, TGF-ß blocker treated mature adipocytes had considerably higher levels of glycerol and triglycerides than the control group, whereas GLUTs and lipases expression levels were unchanged. These findings show that inhibiting the abnormally upregulated TGF-ß pathway will only restore iWAT expansion and ameliorate the global metabolic malfunction of glucose and lipids in lipodystrophy, not obesity.


Asunto(s)
Metabolismo de los Lípidos , Lipodistrofia , Ratones , Animales , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Glicerol , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Lipodistrofia/tratamiento farmacológico , Glucosa/metabolismo
4.
World J Surg Oncol ; 22(1): 20, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233922

RESUMEN

BACKGROUND: Augmented reality (AR), a form of 3D imaging technology, has been preliminarily applied in tumor surgery of the head and spine, both are rigid bodies. However, there is a lack of research evaluating the clinical value of AR in tumor surgery of the brachial plexus, a non-rigid body, where the anatomical position varies with patient posture. METHODS: Prior to surgery in 8 patients diagnosed with brachial plexus tumors, conventional MRI scans were performed to obtain conventional 2D MRI images. The MRI data were then differentiated automatically and converted into AR-based 3D models. After point-to-point relocation and registration, the 3D models were projected onto the patient's body using a head-mounted display for navigation. To evaluate the clinical value of AR-based 3D models compared to the conventional 2D MRI images, 2 senior hand surgeons completed questionnaires on the evaluation of anatomical structures (tumor, arteries, veins, nerves, bones, and muscles), ranging from 1 (strongly disagree) to 5 (strongly agree). RESULTS: Surgeons rated AR-based 3D models as superior to conventional MRI images for all anatomical structures, including tumors. Furthermore, AR-based 3D models were preferred for preoperative planning and intraoperative navigation, demonstrating their added value. The mean positional error between the 3D models and intraoperative findings was approximately 1 cm. CONCLUSIONS: This study evaluated, for the first time, the clinical value of an AR-based 3D navigation system in preoperative planning and intraoperative navigation for brachial plexus tumor surgery. By providing more direct spatial visualization, compared with conventional 2D MRI images, this 3D navigation system significantly improved the clinical accuracy and safety of tumor surgery in non-rigid bodies.


Asunto(s)
Realidad Aumentada , Neoplasias , Cirugía Asistida por Computador , Humanos , Cirugía Asistida por Computador/métodos , Imagenología Tridimensional
5.
Brain Behav Immun ; 117: 224-241, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38244946

RESUMEN

Glial activation and dysregulation of adenosine triphosphate (ATP)/adenosine are involved in the neuropathology of several neuropsychiatric illnesses. The ventral hippocampus (vHPC) has attracted considerable attention in relation to its role in emotional regulation. However, it is not yet clear how vHPC glia and their derived adenosine regulate the anxiodepressive-like consequences of chronic pain. Here, we report that chronic cheek pain elevates vHPC extracellular ATP/adenosine in a mouse model resembling trigeminal neuralgia (rTN), which mediates pain-related anxiodepression, through a mechanism that involves synergistic effects of astrocytes and microglia. We found that rTN resulted in robust activation of astrocytes and microglia in the CA1 area of the vHPC (vCA1). Genetic or pharmacological inhibition of astrocytes and connexin 43, a hemichannel mainly distributed in astrocytes, completely attenuated rTN-induced extracellular ATP/adenosine elevation and anxiodepressive-like behaviors. Moreover, inhibiting microglia and CD39, an enzyme primarily expressed in microglia that degrades ATP into adenosine, significantly suppressed the increase in extracellular adenosine and anxiodepressive-like behaviors. Blockade of the adenosine A2A receptor (A2AR) alleviated rTN-induced anxiodepressive-like behaviors. Furthermore, interleukin (IL)-17A, a pro-inflammatory cytokine probably released by activated microglia, markedly increased intracellular calcium in vCA1 astrocytes and triggered ATP/adenosine release. The astrocytic metabolic inhibitor fluorocitrate and the CD39 inhibitor ARL 67156, attenuated IL-17A-induced increases in extracellular ATP and adenosine, respectively. In addition, astrocytes, microglia, CD39, and A2AR inhibitors all reversed rTN-induced hyperexcitability of pyramidal neurons in the vCA1. Taken together, these findings suggest that activation of astrocytes and microglia in the vCA1 increases extracellular adenosine, which leads to pain-related anxiodepression via A2AR activation. Approaches targeting astrocytes, microglia, and adenosine signaling may serve as novel therapies for pain-related anxiety and depression.


Asunto(s)
Dolor Crónico , Neuralgia del Trigémino , Animales , Ratones , Adenosina/farmacología , Adenosina Trifosfato/farmacología , Modelos Animales de Enfermedad , Hipocampo , Microglía
6.
Neurobiol Stress ; 28: 100593, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38075025

RESUMEN

Glucocorticoids are primary stress hormones that exert neuronal effects via both genomic and non-genomic signaling pathways. However, their rapid non-genomic effects and underlying mechanisms on neural activities remain elusive. In the present study, we investigated the rapid non-genomic effect of glucocorticoids on Kv2.2 channels in cultured HEK293 cells and acute brain slices including cortical pyramidal neurons and calyx-type synapses in the brain stem. We found that cortisol, the endogenous glucocorticoids, rapidly increased Kv2.2 currents by increasing the single-channel open probability in Kv2.2-expressing HEK293 cells through activation of the membrane-associated glucocorticoid receptor. Bovine serum albumin-conjugated dexamethasone, a membrane-impermeable agonist of the glucocorticoid receptor, could mimic the effect of cortisol on Kv2.2 channels. The cortisol-increased Kv2.2 currents were induced by activation of the extracellular signal-regulated protein kinase (ERK) 1/2 kinase, which could be inhibited by U0126, an antagonist of the ERK signaling pathway. In layer 2 cortical pyramidal neurons and the calyx of Held synapses, cortisol suppressed the action potential firing frequency during depolarization and reduced the successful rate upon high-frequency stimulation by activating Kv2.2 channels. We further examined the postsynaptic responses and found that cortisol did not affect the mEPSC and evoked EPSC, but increased the activity-dependent synaptic depression induced by a high-frequency stimulus train. In conclusion, glucocorticoids can rapidly activate Kv2.2 channels through membrane-associated glucocorticoid receptors via the ERK1/2 signaling pathway, suppress presynaptic action potential firing, and inhibit synaptic transmission and plasticity. This may be a universal mechanism of the glucocorticoid-induced non-genomic effects in the central nervous system.

7.
Nat Biomed Eng ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996614

RESUMEN

Retinal prostheses could restore image-forming vision in conditions of photoreceptor degeneration. However, contrast sensitivity and visual acuity are often insufficient. Here we report the performance, in mice and monkeys with induced photoreceptor degeneration, of subretinally implanted gold-nanoparticle-coated titania nanowire arrays providing a spatial resolution of 77.5 µm and a temporal resolution of 3.92 Hz in ex vivo retinas (as determined by patch-clamp recording of retinal ganglion cells). In blind mice, the arrays allowed for the detection of drifting gratings and flashing objects at light-intensity thresholds of 15.70-18.09 µW mm-2, and offered visual acuities of 0.3-0.4 cycles per degree, as determined by recordings of visually evoked potentials and optomotor-response tests. In monkeys, the arrays were stable for 54 weeks, allowed for the detection of a 10-µW mm-2 beam of light (0.5° in beam angle) in visually guided saccade experiments, and induced plastic changes in the primary visual cortex, as indicated by long-term in vivo calcium imaging. Nanomaterials as artificial photoreceptors may ameliorate visual deficits in patients with photoreceptor degeneration.

8.
Plast Reconstr Surg ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921616

RESUMEN

BACKGROUND: Contralateral cervical seventh (cC7) nerve to C7 transfer has been proven effective for treating spastic upper limb. However, for those whose major impairment is not in the C7 area, cC7 nerve transfer to other nerve(s) may achieve a better outcome. The aim of this study was to explore the optimal surgical approach for transferring cC7 to one or two nerves by cadaveric study and to discuss the possible applications for hemiplegic patients. METHODS: Modified cC7 transfer to one (five procedures) or two nonadjacent (three procedures) nerve roots was proposed, and success rates of direct coaptation through two surgical approaches were compared: the superficial surface of longus colli (sLC) and the deep surface of longus colli (dLC) approaches. The length, diameter and distance of relevant nerves were also measured in 25 cadavers. RESULTS: Compared with the sLC approach, the distance of the dLC approach was 1.1 ± 0.3 cm shorter. The success rates for the sLC and dLC approaches were as follows, respectively: cC7-C5 surgery, 94% and reached 98%; cC7-C6 surgery, 54% and 96%; cC7-C7 surgery, 42% and 94%; cC7-C8 surgery, 34% and 94%; cC7-T1 surgery, 24% and 62%; cC7-C5C7 surgery, 74% and 98%; cC7-C6C8 surgery, 54% and 98%. cC7-C7T1 surgery, 42% and 88%. CONCLUSIONS: The dLC approach greatly improved direct coaptation rate for cC7 nerve transfer. The modified cC7 nerve transfer procedures are technically feasible for further application in clinic.

9.
Exp Neurol ; 369: 114546, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751813

RESUMEN

Traumatic brain injury (TBI) is a significant cause of human disability, and understanding its spontaneous recovery pattern after injury is critical for potential treatments. However, studies on the function of the contralesional cortex after TBI have mostly focused on acute-phase changes, and long-term dynamic changes in the control of the affected limb by the contralesional cortex are less understood. To unravel long-term adaptations in the contralesional cortex, we developed a mouse model of TBI and used longitudinal optogenetic motor mapping to observe the function of contralesional corticospinal neurons (CSNs) projecting to the unilateral seventh cervical (C7) segment of the spinal cord. We injected a retrograde adeno-associated virus (AAV) expressing channelrhodopsin-2 to optogenetically stimulate and map the functional connections of the motor-sensory cortex. We validated the effectiveness of transcranial optogenetic stimulation for functional mapping and observed a general increase in the control of the affected limb by the contralesional cortex over time. Using retrograde labeling techniques, we showed that TBI does not affect the distribution of C7-CSNs but alters their function, and the labeled CSNs are concentrated in the caudal and rostral forelimb areas. Our findings provide new insights into harnessing contralesional cortical plasticity to improve treatment for affected limbs. This study sheds light on the long-term adaptations in the contralesional cortex after TBI, paving the way for potential clinical applications of optogenetic stimulation to improve motor control and rehabilitation outcomes.

10.
BMJ Open ; 13(5): e065173, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130672

RESUMEN

INTRODUCTION: Aphasia affects many stroke survivors; therefore, effective treatments are urgently needed. Preliminary clinical findings have suggested an association between contralateral C7-C7 cross nerve transfer and recovery from chronic aphasia. Randomised controlled trials supporting the efficacy of C7 neurotomy (NC7) are lacking. This study will explore the efficacy of NC7 at the intervertebral foramen for improving chronic poststroke aphasia. METHODS AND ANALYSIS: This study protocol reports a multicentre, randomised, assessor-blinded active-controlled trial. A total of 50 patients with chronic poststroke aphasia for over 1 year and with a aphasia quotient calculated by Western Aphasia Battery Aphasia Quotient (WAB-AQ) score below 93.8 will be recruited. Participants will be randomly assigned to 1 of 2 groups (25 individuals each) to receive NC7 plus intensive speech and language therapy (iSLT), or iSLT alone programme. The primary outcome is the change in Boston Naming Test score from baseline to the first follow-up after NC7 plus 3 weeks of iSLT or iSLT alone. The secondary outcomes include the changes in the WAB-AQ, Communication Activities of Daily Living-3, International Classification of Functioning, Disability and Health (ICF) speech language function, Barthel Index, Stroke Aphasic Depression Questionnaire-hospital version and sensorimotor assessments. The study will also collect functional imaging outcomes of naming and semantic violation tasks through functional MRI and electroencephalogram to evaluate the intervention-induced neuroplasticity. ETHICS AND DISSEMINATION: This study was approved by the institutional review boards of Huashan Hospital, Fudan University, and all participating institutions. The study findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: ChiCTR2200057180.


Asunto(s)
Afasia , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Actividades Cotidianas , Afasia/etiología , Accidente Cerebrovascular/complicaciones , Logopedia/métodos , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
11.
Psychol Sci ; 34(5): 616-632, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37040450

RESUMEN

Social adversity not only causes severe psychological diseases but also may improve people's ability to learn and grow. However, the beneficial effects of social adversity are often ignored. In this study, we investigated whether and how social adversity affects learning and memory in a mouse social defeat stress (SDS) model. A total of 652 mice were placed in experimental groups of six to 23 mice each. SDS enhanced spatial, novelty, and fear memory with increased synaptosome associated protein 25 (SNAP-25) level and dendritic spine density in hippocampal neurons among young but not middle-aged mice. Chemogenetic inhibition of hippocampal CaMK2A+ neurons blocked SDS-induced enhancement of learning or memory. Knockdown of SNAP-25 or blockade of N-methyl-D-aspartate (NMDA) receptor subunit GluN2B in the hippocampus prevented SDS-induced learning memory enhancement in an emotion-independent manner. These findings suggest that social adversity promotes learning and memory ability in youths and provide a neurobiological foundation for biopsychological antifragility.


Asunto(s)
Derrota Social , Sinaptosomas , Animales , Ratones , Hipocampo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Estrés Psicológico
12.
Acta Neurochir (Wien) ; 165(5): 1179-1188, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943480

RESUMEN

BACKGROUND: Hyperselective neurectomy is a reliable treatment for spasticity. This research was designed to quantify the surgical parameters of hyperselective neurectomy of thoracodorsal nerve for shoulder spasticity through anatomical studies, as well as to retrospectively assess patients who underwent this procedure to provide an objective basis for clinical practice. METHODS: On nine embalmed adult cadavers (18 shoulders), we dissected and observed the branching patterns of thoracodorsal nerve, counted the number of nerve branches, measured the distribution of branch origin point, and determined the length of the surgical incision. Next, we selected five patients who underwent this procedure for shoulder spasticity and retrospectively evaluated (ethic committee: 2022-37) their shoulder function with active/passive range of motion (AROM/PROM) and modified Ashworth scale (MAS). RESULTS: The anatomical study revealed that the main trunk of thoracodorsal nerve sends out one to three medial branches, with the pattern of only one medial branch being the most common (61.1%); there were significant variations in the branch numbers and nerve distributions; the location of thoracodorsal nerve branches' entry points into the muscle varied from 27.2 to 67.8% of the length of the arm. Clinical follow-up data showed significant improvement in shoulder mobility in all patients. AROM of shoulder abduction increased by 39.4° and PROM increased by 64.2° (P < 0.05). AROM and PROM of shoulder flexion increased by 36.6° and 54.4°, respectively (P < 0.05). In addition, the MAS of shoulder abduction (1.8) and flexion (1.2) was both significantly reduced in all patients (P < 0.05). CONCLUSION: Hyperselective neurectomy of thoracodorsal nerve is effective and stable in the treatment of shoulder spasticity. Intraoperative attention is required to the numbers of the medial branch of thoracodorsal nerve. We recommend an incision in the mid-axillary line that extends from 25 to 70% of the arm length to fully expose each branch.


Asunto(s)
Músculo Esquelético , Hombro , Adulto , Humanos , Estudios Retrospectivos , Músculo Esquelético/inervación , Espasticidad Muscular/cirugía , Desnervación/métodos
13.
J Hand Surg Eur Vol ; 48(8): 747-754, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36708214

RESUMEN

In this study, we examined the prognostic factors affecting outcomes following nerve grafting in high radial nerve injuries. Thirty-three patients with radial nerve injuries at a level distal to the first branch to the triceps and proximal to the posterior interosseous nerve were retrospectively studied. After a follow-up of at least 1 year, 24 patients (73%) obtained M3+ wrist extension, 16 (48%) obtained M3+ finger extension and only ten (30%) obtained M3+ thumb extension. Univariate, multivariate and receiver operating characteristic analyses showed that a delay in the repair of less than 6 months, a defect length of less than 5 cm or when grafted with three or more donor nerve cables achieved better recovery. Number of cables used was related to muscle strength recovery but not time to reinnervation. Nerve grafting for high radial nerve injury achieved relatively good wrist extension but poor thumb extension and is affected by certain prognostic factors. Level of evidence: IV.


Asunto(s)
Transferencia de Nervios , Nervio Radial , Humanos , Nervio Radial/cirugía , Nervio Radial/lesiones , Estudios Retrospectivos , Pronóstico , Procedimientos Neuroquirúrgicos , Dedos/inervación
14.
Neurosci Bull ; 39(7): 1069-1086, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36422797

RESUMEN

Cortical interneurons can be categorized into distinct populations based on multiple modalities, including molecular signatures and morpho-electrical (M/E) properties. Recently, many transcriptomic signatures based on single-cell RNA-seq have been identified in cortical interneurons. However, whether different interneuron populations defined by transcriptomic signature expressions correspond to distinct M/E subtypes is still unknown. Here, we applied the Patch-PCR approach to simultaneously obtain the M/E properties and messenger RNA (mRNA) expression of >600 interneurons in layer V of the mouse somatosensory cortex (S1). Subsequently, we identified 11 M/E subtypes, 9 neurochemical cell populations (NCs), and 20 transcriptomic cell populations (TCs) in this cortical lamina. Further analysis revealed that cells in many NCs and TCs comprised several M/E types and were difficult to clearly distinguish morpho-electrically. A similar analysis of layer V interneurons of mouse primary visual cortex (V1) and motor cortex (M1) gave results largely comparable to S1. Comparison between S1, V1, and M1 suggested that, compared to V1, S1 interneurons were morpho-electrically more similar to M1. Our study reveals the presence of substantial M/E variations in cortical interneuron populations defined by molecular expression.


Asunto(s)
Neocórtex , Ratones , Animales , Neocórtex/fisiología , Ratones Transgénicos , Interneuronas/fisiología
15.
Br J Neurosurg ; 37(3): 442-447, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30862198

RESUMEN

OBJECTIVE: The objective of the study was to investigate the feasibility of CUBE-SITR MRI and high-frequency ultrasound for the structural imaging of the brachial plexus to exclude neoplastic brachial plexopathy or structural variation and measure the lengths of anterior and posterior divisions of the C7 nerve, providing guidelines for surgeons before contralateral cervical 7 nerve transfer. METHODS: A total of 30 patients with CNS and 20 with brachial plexus injury were enrolled in this retrospective study. All patients underwent brachial plexus CUBE-STIR MRI and high-frequency ultrasound, and the lengths of the anterior and posterior divisions of C7 nerve were measured before surgery. Precise length of anterior and posterior divisions of contralateral C7 nerve was measured during surgery. RESULTS: MRI-measured lengths of anterior and posterior divisions of C7 nerves were positively correlated with that measured during surgery (anterior division, r = 0.94, p < .01; posterior division, r = 0.92, p < .01). High agreement was found between MRI-measured and intra-surgery measured length of anterior and posterior divisions of C7 nerve by BLAD-ALTMAN analysis. Ultrasonography could feasibly image supraclavicular C7 nerve and recognize small variant branches derived from middle trunk of C7 nerve root, which could be dissected intra-operatively and confirmed by electromyography during the procedure of contralateral C7 nerve transfer. CONCLUSION: CUBE-STIR MRI had advantages for the imaging of the brachial plexus and measurement of the length of root-trunk-anterior/posterior divisions of C7 nerve. The clinical role of ultrasonography may be a simple way of evaluating general condition of C7 nerve and provide guidelines for contralateral C7 nerve transfer surgery.


Asunto(s)
Neuropatías del Plexo Braquial , Plexo Braquial , Transferencia de Nervios , Humanos , Transferencia de Nervios/métodos , Estudios Retrospectivos , Plexo Braquial/diagnóstico por imagen , Plexo Braquial/cirugía , Plexo Braquial/lesiones , Neuropatías del Plexo Braquial/diagnóstico por imagen , Neuropatías del Plexo Braquial/cirugía , Ultrasonografía , Imagen por Resonancia Magnética
16.
Br J Pharmacol ; 180(8): 1090-1113, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36443951

RESUMEN

BACKGROUND AND PURPOSE: Patients suffering from trigeminal neuralgia are often accompanied by anxiety and depression. Microglia-mediated neuroinflammation is involved in the development of neuropathic pain and anxiodepression pathogenesis. Whether and how microglia are involved in trigeminal neuralgia-induced anxiodepression remains unclear. EXPERIMENTAL APPROACH: Unilateral constriction of the infraorbital nerve (CION) was performed to establish trigeminal neuralgia in rat and mouse models. Mechanical allodynia and anxiodepressive-like behaviours were measured. Optogenetic and pharmacological manipulations were employed to investigate the role of hippocampal microglia in anxiety and depression caused by trigeminal neuralgia. KEY RESULTS: Trigeminal neuralgia activated ipsilateral but not contralateral hippocampal microglia, up-regulated ipsilateral hippocampal ATP and interleukin-1ß (IL-1ß) levels, impaired ipsilateral hippocampal long-term potentiation (LTP) and induced anxiodepressive-like behaviours in a time-dependent manner in rodents. Pharmacological or optogenetic inhibition of ipsilateral hippocampal microglia completely blocked trigeminal neuralgia-induced anxiodepressive-like behaviours. Activation of unilateral hippocampal microglia directly elicited an anxiodepressive state and impaired hippocampal LTP. Knockdown of ipsilateral hippocampal P2X7 receptors prevented trigeminal neuralgia-induced microglial activation and anxiodepressive-like behaviours. Furthermore, we demonstrated that microglia-derived IL-1ß mediated microglial activation-induced anxiodepressive-like behaviours and LTP impairment. CONCLUSION AND IMPLICATIONS: These findings suggest that priming of microglia with ATP/P2X7 receptors in the ipsilateral hippocampus drives pain-related anxiodepressive-like behaviours via IL-1ß. An asymmetric role of the bilateral hippocampus in trigeminal neuralgia-induced anxiety and depression was uncovered. The approaches targeting microglia and P2X7 signalling might offer novel therapies for trigeminal neuralgia-related anxiety and depressive disorder.


Asunto(s)
Neuralgia , Neuralgia del Trigémino , Ratones , Ratas , Animales , Neuralgia del Trigémino/patología , Microglía/patología , Roedores , Hipocampo , Hiperalgesia , Adenosina Trifosfato
18.
BMC Musculoskelet Disord ; 23(1): 1001, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419049

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is an incurable autoimmune disease characterized by progressive skin fibrosis and organ failure. Tenosynovitis is a common musculoskeletal manifestation, but tendon rupture has seldom reported in SSc. CASE PRESENTATION: We present a rare case of a 49-year-old female with SSc who has suffered from bilateral tendon rupture of the fourth and fifth digits with positive antinuclear antibody (ANA) and anti-centromere B antibody, but negative rheumatoid factor in serum. In the extensor tendons of the patient's hands, inflammation, edema, hypertrophy and tendon interruption were detected with ultrasound and magnetic resonance imaging(MRI). Tendon transfer repair surgery was performed and 10 mg/week methotrexate was then used in this patient. Her hand function was improved well with methotrexate and rehabilitation treatment postoperatively. CONCLUSIONS: Early detection of tenosynovitis is necessary to prevent tendon rupture in SSc patients. Ultrasound and Magnetic Resonance Imaging appear to be useful examinations for evaluating tendon pathology for early detection.


Asunto(s)
Esclerodermia Sistémica , Traumatismos de los Tendones , Tenosinovitis , Humanos , Femenino , Persona de Mediana Edad , Tenosinovitis/diagnóstico por imagen , Tenosinovitis/etiología , Tenosinovitis/cirugía , Metotrexato , Traumatismos de los Tendones/complicaciones , Traumatismos de los Tendones/diagnóstico por imagen , Rotura Espontánea , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/diagnóstico por imagen , Tendones/patología
19.
Neurosci Bull ; 38(12): 1569-1587, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36333482

RESUMEN

Central nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain-computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.


Asunto(s)
Traumatismos de la Médula Espinal , Accidente Cerebrovascular , Animales , Traumatismos de la Médula Espinal/terapia , Neuronas Motoras/fisiología , Encéfalo , Recuperación de la Función/fisiología
20.
Front Surg ; 9: 945013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338619

RESUMEN

Background: There is no consensus on the best surgery option for thumb carpometacarpal osteoarthritis (CMC OA). The traditional method has the risk of large trauma, obvious metacarpal subsidence, and decreased stability. The aim of this study is to introduce a different technique to restore the function and stability of the first carpal metacarpal joint with minimal trauma, rapid pain relief, reduced complications, and the clinical outcomes in the long-term follow-up was evaluated and statistically analyzed. Methods: This was a retrospective study of 10 patients with a mean age of 51.8 years. The surgery consisted of removing partial trapezium through arthroscopy, reconstructing the stability with flexor carpi radialis suspension and tendon interposition. The subjective assessment included visual analog scale (VAS) of pain, quick disabilities of the arm, shoulder, and hand (Quick-DASH) score, and patient satisfaction. The range of motion, grip strength, pinch strength, and radiographic assessment, which can reflect stability of the thumb, were objectively evaluated and statistically analyzed. Results: Ten patients were monitored at a mean follow-up of 6.8 years. The mean grip strength improved significantly from 16.64 to 22.57 kg after surgery. Pinch strength improved significantly from 3.72 to 5.71 kg on average. The Kapandji score improved significantly from 5.7 to 8.6 on average. 80% (8/10) of the patients were satisfied with this surgery. On objective indicators, the VAS score decreased significantly from 6.4 to 1.3 on average. The mean Quick-DASH score improved significantly from 6.1 to 28.9. Postoperative x-ray showed slight subsidence and dislocation of the first metacarpal in two patients and did not affect the function by measurement. Conclusion: Arthroscopy-assisted partial trapezium resection combined with ligament reconstruction could be a workable and promising surgical technique in patients with thumb CMC OA. It can offer the advantages of minimizing surgical injury by preserving the first carpal metacarpal joint capsule to protect its stability, with a rapid pain relief, function improvement, and satisfactory results in patients' clinical measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...