Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Phytomedicine ; 135: 156048, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39326132

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a type of inflammatory bowel disease primarily affecting the colon and rectum. The clinical symptoms of UC include persistent diarrhea, abdominal pain, and rectal bleeding, with chronic inflammation often limited to the mucosal layer of the colon. Macrophages play a significant role in the pathogenesis of UC in response to the presence of gut microbiota. Puerarin is an active compound derived from the root of pueraria lobata, a traditional Chinese herbal medicine, and exhibits potent anti-inflammatory properties in various diseases and disease models including UC-like colitis in mice. However, how the molecule achieves its therapeutic effect in colitis by re-polarizing macrophages remains poorly understood. PURPOSE: Utilizing in vivo and in vitro experimental methods along with multi-omics analysis, we aimed to elucidate the potential mechanism by which puerarin targets macrophages to treat colitis. METHODS: The inflammation induced by DSS was assessed both locally in the gut and systemically, and the anti-inflammatory effect of puerarin was evaluated using molecular and histological assays such as H&E staining, qPCR, ELISA, Western blot, and immunofluorescence. Intestinal permeability parameters were measured by in vivo imaging, immunofluorescence, Western blot, qPCR, and PAS staining. The central role of macrophages in colitis was investigated through macrophage depletion/infusion using cytological methods. The direct effects of puerarin on the macrophages were examined by CCK8, flow cytometry, and qPCR in vitro. Additionally, 16S rRNA sequencing and metabolomics analysis of gut contents were conducted. Identification of key pathogenic flora was facilitated by a trans-omic approach and validated both in vitro and in vivo. RESULTS: Puerarin exerted a direct and robust suppression of M1-like polarization of macrophages in vitro, which was sufficient to confer therapeutic benefits in terms of colonic lesions and systemic inflammation in DSS mice. Puerarin also reduced the abundance of Akkermansia muciniphila in the gut, which was significantly upregulated in DSS mice in our experimental context. Further study demonstrated that puerarin effectively suppressed M1-like macrophage activation induced by Akkermansia muciniphila secreted protein Amuc_2172, thereby altering the pathology in the DSS model. CONCLUSION: Our data suggest that the pathogenesis of DSS colitis is mediated by host cellular responses to toxic foreign molecules and the gut microbiota, and targeting specific cell populations, such as macrophages, with puerarin holds potential therapeutic value.

2.
Bioresour Technol ; 413: 131498, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299343

RESUMEN

Ecologically, interactions and contributions of microbiota generalists and specialists remain largely unexplored in remediation of deep-sea oil pollution. Herein, ecological and evolutionary characteristics of the two taxa were comprehensively investigated in restoration of oil-polluted sediment at deep-sea microcosm. Niche-specialized taxa exhibited rapid speciation rate, more complex network structure and highly interspecific mutualism. In contrast, generalists possessed higher richness but with poor local performance, as evidenced by higher extinction rate, lower stability, and more interspecific antagonism. Generalists were the primary oil degraders, while specialists acted as auxiliaries promoting degradation via production of biofilm and biosurfactant. Evolutionarily, the continuous transition from specialists to generalists insured the exclusion of generalist at a relatively constant level for ecological trade-offs. Collectively, the findings emphasize the importance of specialists in facilitating oil degradation by elucidating their vital roles in maintaining system stability and regulating microbial diversity during process, and offer valuable guidance for designing remediation plans.

3.
Mol Nutr Food Res ; : e2400386, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246092

RESUMEN

SCOPE: This research examines the effects of maternal high-fat (HF) diet and gestational diabetes mellitus (GDM) on offspring lipid metabolism and polyunsaturated fatty acids (PUFA) profile. METHODS AND RESULTS: GDM is induced using the insulin receptor antagonist S961. Weaning offspring are categorized into HF-GDM, HF-CON, NC-GDM, and NC-CON groups based on maternal diet or GDM. Adult offspring are then grouped into NC-CON-NC, NC-CON-HF, NC-GDM-NC, NC-GDM-HF, HF-CON-NC, HF-CON-HF, HF-GDM-NC, and HF-GDM-HF according to dietary patterns. Gas chromatography determines PUFA composition. Western blot assesses PI3K/Akt signaling pathway-related protein expression. Feeding a normal chow diet until adulthood improves the distribution of hepatic PUFA during weaning across the four groups. PI3K expression is upregulated during weaning in HF-CON and HF-GDM, particularly in HF-CON-NC and HF-GDM-NC, compared to NC-CON-NC during adulthood. Akt expression increases in NC-GDM-NC after weaning with a normal diet. The hepatic PUFA profile in HF-CON-HF significantly distinguishes among the maternal generation health groups. Maternal HF diet exacerbates the combined impact of maternal GDM and offspring HF diet on hepatic PUFA and PI3K/Akt signaling pathway-related proteins during adulthood. CONCLUSIONS: Early exposure to HF diets and GDM affects hepatic PUFA profiles and PI3K/Akt signaling pathway protein expression in male offspring during weaning and adulthood.

4.
Neuromodulation ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39115505

RESUMEN

OBJECTIVES: This study aimed to investigate the integrative effects and mechanisms of transcutaneous electrical acustimulation (TEA) on postprocedural recovery from endoscopic retrograde cholangio-pancreatography (ERCP). MATERIALS AND METHODS: A total of 86 patients for elective ERCP were randomly ordered to receive TEA (n = 43) at acupoints PC6 and ST36 or Sham-TEA (n = 43) at sham points from 24 hours before ERCP (pre-ERCP) to 24 hours after ERCP (PE24). Scores of gastrointestinal (GI) motility-related symptoms and abdominal pain, gastric slow waves, and autonomic functions were recorded through the spectral analysis of heart rate variability; meanwhile, circulatory levels of inflammation cytokines of tumor necrosis factor-α (TNF-α) and interleukin (IL)-10 and GI hormones of motilin, ghrelin, cholecystokinin (CCK), and vasoactive intestinal peptide (VIP) were assessed by enzyme-linked immunosorbent assay. RESULTS: 1) TEA, but not Sham-TEA, decreased the post-ERCP GI motility-related symptom score (2.4 ± 2.6 vs 7.9 ± 4.6, p < 0.001) and abdominal pain score (0.5 ± 0.7 vs 4.1 ± 2.7, p < 0.001) at PE24, and decreased the post-ERCP hospital day by 20.0% (p <0.05 vs Sham-TEA); 2) TEA improved the average gastric percentage of normal slow waves and dominant frequency by 34.6% and 33.3% at PE24, respectively (both p < 0.001 vs Sham-TEA); 3) TEA, but not Sham-TEA, reversed the ERCP-induced increase of TNF-α but not IL-10 at PE24, reflected as a significantly lower level of TNF-α in the TEA group than in the Sham-TEA group (1.6 ± 0.5 pg/mL vs 2.1 ± 0.9 pg/mL, p < 0.01); 4) compared with Sham-TEA, TEA increased vagal activity by 37.5% (p < 0.001); and 5) TEA caused a significantly higher plasma level of ghrelin (1.5 ± 0.8 ng/ml vs 1.1 ± 0.7 ng/ml, p < 0.05) but not motilin, VIP, or CCK than did Sham-TEA at PE24. CONCLUSION: TEA at PC6 and ST36 accelerates the post-ERCP recovery, reflected as the improvement in GI motility and amelioration of abdominal pain, and suppression of the inflammatory cytokine TNF-α may mediate through both autonomic and ghrelin-related mechanisms.

5.
Anal Chim Acta ; 1320: 343034, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142776

RESUMEN

BACKGROUND: Bacillus cereus (B. cereus) is a widespread conditional pathogen that affects food safety and human health. Conventional methods such as bacteria culture and polymerase chain reaction (PCR) are difficult to use for rapid identification of bacterial spores because of the relatively long analysis times. From a human health perspective, there is an urgent need to develop an ultrasensitive, rapid, and accurate method for the detection of B. cereus spores. RESULTS: The study proposed a new method for rapidly and sensitively detecting the biomarkers of bacterial spores via surface-enhanced Raman spectroscopy (SERS) combined with electrochemical enrichment. The 2,6-Pyridinedicarboxylic acid (DPA) was used as the model analyte to acts as a biomarker of B. cereus spores. The SERS substrate was developed via the in-situ generation of Ag nanoparticles (AgNPs) in a cuttlebone-derived organic matrix (CDOM). Because of the depletion of chitin reduction sites on the CDOM, the pores of the porous channels expanded. The pores diameter of the AgNPs/CDOM porous channel was found to be in the range of 0.7-1.3 nm through molecular diffusion experiments. Based on the porosity of AgNPs/CDOM substrates and the high sensitivity of SERS substrates, the sensor can rapidly and accurately electronically enrich DPA in 40 s with the limit of detection (LOD) of 0.3 nM. SIGNIFICANCE: The results demonstrate that electrochemically assisted SERS substrates can be served as a high sensitivity electrochemical-enrichment device for the rapid and sensitive detection of bacterial spores with minimal interference from potentially coexisting species in biological samples. In this study, it opens up a platform to explore the application of porous channels in natural bio-derived materials in the field of food safety.


Asunto(s)
Bacillus cereus , Biomarcadores , Plata , Espectrometría Raman , Esporas Bacterianas , Bacillus cereus/aislamiento & purificación , Bacillus cereus/metabolismo , Espectrometría Raman/métodos , Esporas Bacterianas/aislamiento & purificación , Esporas Bacterianas/química , Plata/química , Porosidad , Biomarcadores/análisis , Nanopartículas del Metal/química , Ácidos Picolínicos/análisis , Ácidos Picolínicos/química , Límite de Detección , Propiedades de Superficie
6.
Nat Prod Res ; : 1-17, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205630

RESUMEN

Euphorbia pekinensis Rupr. is a traditional herb generally distributed in most areas of China, north Korea and Japan. The dried roots of Euphorbia pekinensis Rupr. (REP), famous as 'Jing Da Ji' () have been applied as traditional herb medicines to expel water and rheum; disperse swelling, dissipate binds and to treat edoema, pleural effusions, uraemia, nephritis, cirrhosis with ascites, as well as other diseases. Recent advances in botany, traditional uses, phytochemistry, pharmacology, quality control, and toxicology of E. pekinensis roots are methodically outlined and current limitations as well as future perspectives also are discussed in order to guide scientifical investigation and rational application of REP. Up to now, 79 structurally diverse compounds have been obtained and characterised from REP, principally including diterpenoids, triterpenoids, tannins, phenols, and 29 volatile constituents. Among which, diterpenoids are considered as primary characteristic and active constituents. The extracts and individual compounds from REP have demonstrated significant pharmacological effects such as diuretic and purgative, anti-inflammatory, and cytotoxic effects. REP are widely used in traditional medicine due to diverse chemical constituents with obvious pharmacological effects. Modern phytochemical and pharmacological studies justified and explained relevant traditional uses of REP and offer worthy clues for new medical fields of industrial application. Nevertheless, a great number of thorough and detailed investigations should be carried out in active constituents, mechanisms of action, quality-marker, toxicology assessment, and detoxification mechanisms of REP.

7.
Heliyon ; 10(12): e32357, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022002

RESUMEN

Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.

8.
Aging Ment Health ; : 1-13, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946249

RESUMEN

OBJECTIVES: To systematically evaluate the effects of telehealth interventions on the caregiver burden and mental health of caregivers for people with dementia (PWD). METHOD: Relevant randomized controlled trials (RCTs) of telehealth interventions on caregivers were extracted from nine electronic databases (PubMed, The Cochrane Library, Web of Science, Embase, CINAHL, SinoMed, CNKI, WanFang, and VIP). The retrieval time was from inception to 26 July 2023. RESULTS: Twenty-two articles with 2132 subjects were included in the final analysis. The meta-analysis demonstrated that telehealth interventions exerted a significant effect in reducing caregiver burden (SMD: -0.14, 95 % CI: -0.25, -0.02, p = 0.02), depression (SMD = -0.17; 95%CI: -0.27, -0.07, p < 0.001) and stress (SMD = -0.20, 95%CI: -0.37, -0.04, p = 0.01). However, no statistically significant effect was observed on anxiety (SMD = -0.12, 95%CI: -0.27, 0.03, p = 0.12). Moreover, subgroup analysis showed that tailored interventions were associated with more evident reductions in depression (SMD = -0.26; 95%CI: -0.40, -0.13, p < 0.001) than standardized interventions (SMD = -0.08; 95%CI: -0.22, 0.06, p = 0.25). In addition, telehealth was effective in relieving depression in Internet-based (SMD = -0.17, 95%CI: -0.30, -0.03, p = 0.01) and Telephone-based group (SMD = -0.18, 95%CI: -0.34, -0.02, p = 0.03), while there was no significant difference in the Internet and Telephone-based group (SMD = -0.18, 95%CI: -0.54, 0.18, p = 0.32). CONCLUSION: Telehealth could effectively reduce the burden and relieve the depression and stress of caregivers of PWD, while its effect on anxiety requires further research. Overall, telehealth has potential benefits in dementia care.

9.
Sci Total Environ ; 946: 174249, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936740

RESUMEN

Nanoplastics (NPs) present a hidden risk to organisms and the environment via migration and enrichment. Detecting NPs remains challenging because of their small size, low ambient concentrations, and environmental variability. There is an urgency to exploit detection approaches that are more compatible with real-world environments. Herein, this study provides a surface-enhanced Raman spectroscopy (SERS) technique for the in situ reductive generation of silver nanoparticles (Ag NPs), which is based on photoaging-induced modifications in NPs. The feasibility of generating Ag NPs on the surface of NPs was derived by exploring the photoaging mechanism, which was then utilized to SERS detection. The approach was applied successfully for the detection of polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) NPs with excellent sensitivity (e.g., as low as 1 × 10-6 mg/mL for PVC NPs, and an enhancement factor (EF) of up to 2.42 × 105 for small size PS NPs) and quantitative analytical capability (R2 > 0.95579). The method was successful in detecting NPs (PS NPs) in lake water. In addition, satisfactory recoveries (93.54-105.70 %, RSD < 12.5 %) were obtained by spiking tap water as well as lake water, indicating the applicability of the method to the actual environment. Therefore, the proposed approach offers more perspectives for testing real environmental NPs.

10.
Opt Express ; 32(11): 19088-19104, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859052

RESUMEN

Compared with traditional electrical logic gates, optical or terahertz (THz) computing logic gates have faster computing speeds and lower power consumption, and can better meet the huge data computing needs. However, there are limitations inherent in existing optical logic gates, such as single input/output channels and susceptibility to interference. Here, we proposed a new approach utilizing polarization-sensitive graphene-vanadium dioxide metasurface THz logic gates. Benefitting from two actively tunable materials, the proposed controlled-NOT logic gate(CNOT LG) enables versatile functionality through a dual-parameter control system. This system allows for the realization of multiple output states under diverse polarized illuminating conditions, aligning with the expected input-output logic relationship of the CNOT LG. Furthermore, to demonstrate the robustness of the designed THz CNOT LG metasurface, we designed an imaging array harnessing the dynamic control capabilities of tunable meta-atoms, facilitating clear near-field imaging. This research is promising for advancing CNOT LG applications in the THz spectrum. It has potential applications in telecommunications, sensing, and imaging.

11.
Nat Commun ; 15(1): 4786, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839836

RESUMEN

When single-particle dynamics are suppressed in certain strongly correlated systems, dipoles arise as elementary carriers of quantum kinetics. These dipoles can further condense, providing physicists with a rich realm to study fracton phases of matter. Whereas recent theoretical discoveries have shown that an unconventional lattice model may host a dipole condensate as the ground state, we show that dipole condensates prevail in bosonic systems due to a self-proximity effect. Our findings allow experimentalists to manipulate the phase of a dipole condensate and deliver dipolar Josephson effects, where supercurrents of dipoles arise in the absence of particle flows. The self-proximity effects can also be utilized to produce a generic multipolar condensate. The kinetics of the n-th order multipoles unavoidably creates a condensate of the (n + 1)-th order multipoles, forming a hierarchy of multipolar condensates that will offer physicists a whole new class of macroscopic quantum phenomena.

12.
Sci Total Environ ; 934: 173314, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761937

RESUMEN

As emerging environmental pollutants, microplastics (MPs) and nanoplastics (NPs) pose a serious threat to human health. Owing to the lack of feasible and reliable analytical methods, the separation and identification of MPs and NPs of different sizes remains a challenge. In this study, a hyphenated method involving filtration and surface-enhanced Raman spectroscopy (SERS) for the separation and identification of MPs and NPs is reported. This method not only avoids the loss of MPs and NPs during the transfer process but also provides an excellent SERS substrate. The SERS substrate was fabricated by electrochemically depositing silver particles onto the reduced graphene oxide layer coated on stainless steel mesh. Results show that polystyrene (PS) MPs and NPs are efficiently separated on the SERS substrate via vacuum filtration, resulting in high retention rates (74.26 % ± 1.58 % for 100 nm, 81.06 % ± 1.49 % for 500 nm, and 97.73 % ±0.11 % for 5 µm) and low limit of detection (LOD). The LOD values of 100 nm, 500 nm, and 5 µm PS are 8.89 × 10-5, 3.39 × 10-5, and 1.57 × 10-4 µg/mL, respectively. More importantly, a linear relationship for uniform quantification of 100 nm, 500 nm, 3 µm and 5 µm PS was established, and the relationship is Y = 225.61 lgX + 1076.36 with R2 = 0.980. The method was validated for the quantitative analysis of a mixture of 100 nm, 500 nm PS NPs, 3 µm and 5 µm PS MPs in a ratio of 1:1:1:1, which successfully approaches the evaluation of evaluated PS NPs in the range of 10-4-10 µg/mL with an LOD value of approximately 7.82 × 10-5 µg/mL. Moreover, this method successfully detected (3.87 ± 0.06) × 10-5 µg MPs and NPs per gram of oyster tissue.


Asunto(s)
Microplásticos , Poliestirenos , Espectrometría Raman , Poliestirenos/química , Microplásticos/análisis , Espectrometría Raman/métodos , Monitoreo del Ambiente/métodos , Límite de Detección , Plata/análisis , Plata/química , Grafito/química , Contaminantes Químicos del Agua/análisis
13.
Anal Chem ; 96(22): 9278-9284, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38768425

RESUMEN

Antibody pharmaceuticals have become the most popular immunotherapeutic drugs and are often administered with low serum drug dosages. Hence, the development of a highly sensitive method for the quantitative assay of antibody levels is of great importance to individualized therapy. On the basis of the dual signal amplification by the glycan-initiated site-directed electrochemical grafting of polymer chains (glyGPC), we report herein a novel strategy for the amplified electrochemical detection of antibody pharmaceuticals. The target of interest was affinity captured by a DNA aptamer ligand, and then the glycans of antibody pharmaceuticals were decorated with the alkyl halide initiators (AHIs) via boronate cross-linking, followed by the electrochemical grafting of the ferrocenyl polymer chains from the glycans of antibody pharmaceuticals through the electrochemically controlled atom transfer radical polymerization (eATRP). As the glycans can be decorated with multiple AHIs and the grafted polymer chains are composed of tens to hundreds of electroactive tags, the glyGPC-based strategy permits the dually amplified electrochemical detection of antibody pharmaceuticals. In the presence of trastuzumab (Herceptin) as the target, the glyGPC-based strategy achieved a detection limit of 71.5 pg/mL. Moreover, the developed method is highly selective, and the results of the quantitative assay of trastuzumab levels in human serum are satisfactory. Owing to its uncomplicated operation and cost-effectiveness, the glyGPC-based strategy shows great promise in the amplified electrochemical detection of antibody pharmaceuticals.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Electroquímicas , Trastuzumab , Técnicas Electroquímicas/métodos , Humanos , Trastuzumab/química , Trastuzumab/sangre , Aptámeros de Nucleótidos/química , Límite de Detección , Polisacáridos/química , Técnicas Biosensibles/métodos , Polímeros/química
14.
Endocr J ; 71(8): 753-765, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38777757

RESUMEN

Acute sleep deprivation has aroused widespread concern and the relationship between acute sleep deprivation and cortisol levels is inconsistent. This study aimed to explore additional evidence and details. The PubMed, Web of Science, EMBASE, CLINAHL and Cochrane databases were searched for eligible studies published up to June 7, 2023. All analyses were performed using Review Manager 5.4 and Stata/SE 14.0. A total of 24 studies contributed to this meta-analysis. There was no significant difference in cortisol levels between participants with acute sleep deprivation and normal sleep in 21 crossover-designed studies (SMD = 0.18; 95% CI: -0.11, 0.45; p = 0.208) or 3 RCTs (SMD = 0.26; 95% CI: -0.22, 0.73; p = 0.286). Subgroup analysis revealed that the pooled effects were significant for studies using serum as the sample (SMD = 0.46; 95%CI: 0.11, 0.81; p = 0.011). Studies reporting cortisol levels in the morning, in the afternoon and in the evening did not show significant difference (p > 0.05). The pooled effects were statistically significant for studies with multiple measurements (SMD = 0.28; 95%CI: 0.03, 0.53; p = 0.027) but not for studies with single cortisol assessments (p = 0.777). When the serum was used as the test sample, the cortisol levels of individuals after acute sleep deprivation were higher than those with normal sleep.


Asunto(s)
Hidrocortisona , Privación de Sueño , Privación de Sueño/sangre , Hidrocortisona/sangre , Humanos
15.
Metabolites ; 14(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38668344

RESUMEN

Rhubarb (RR), Chinese name Dahuang, is commonly used in the treatment of ischemic stroke (IS). However, its potential mechanism is not fully elucidated. This study intended to verify the effect of RR on IS and investigate the possible mechanism of RR in preventing IS. IS in male rats was induced by embolic middle cerebral artery occlusion (MCAO) surgery, and drug administration was applied half an hour before surgery. RR dramatically decreased the neurological deficit scores, the cerebral infarct volume, and the cerebral edema rate, and improved the regional cerebral blood flow (rCBF) and histopathological changes in the brain of MCAO rats. The 16S rRNA analysis showed the harmful microbes such as Fournierella and Bilophila were decreased, and the beneficial microbes such as Enterorhabdus, Defluviitaleaceae, Christensenellaceae, and Lachnospira were significantly increased, after RR pretreatment. 1H-nuclear magnetic resonance (1H-NMR) was used to detect serum metabolomics, and RR treatment significantly changed the levels of metabolites such as isoleucine, valine, N6-acetyllysine, methionine, 3-aminoisobutyric acid, N, N-dimethylglycine, propylene glycol, trimethylamine N-oxide, myo-inositol, choline, betaine, lactate, glucose, and lipid, and the enrichment analysis of differential metabolites showed that RR may participate in the regulation of amino acid metabolism and energy metabolism. RR exerts the role of anti-IS via regulating gut bacteria and metabolic pathways.

16.
Opt Lett ; 49(8): 1927, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621041

RESUMEN

This publisher's note contains a correction to Opt. Lett.48, 3977 (2023)10.1364/OL.495706.

17.
J Biotechnol ; 386: 64-71, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38519035

RESUMEN

With the world's population rapidly increasing, the demand for high-quality protein is on the rise. Edible fungi breeding technology stands as a crucial avenue to obtain strains with high yield, high-quality protein, and robust stress resistance. To address the protein supply gap, Atmospheric and Room Temperature Plasma (ARTP) mutagenesis, and spore hybridization techniques were employed to enhance Pleurotus djamor mycelium protein production. Beginning with the original strain Pleurotus djamor JD-1, ARTP was utilized to mutate spore suspension. The optimal treatment time for Pleurotus djamor spores, determined to achieve optimal mortality, was 240 s. Through primary and secondary screenings, 6 mutant strains out of 39 were selected, exhibiting improved protein yield and growth rates compared to the original strain. Among these mutagenic strains, 240S-4 showcased the highest performance, with a mycelial growth rate of 9.5±0.71 mm/d, a biomass of 21.45±0.54 g/L, a protein content of 28.75±0.92%, and a remarkable protein promotion rate of 128.03±7.29%. Additionally, employing spore hybridization and breeding, 7 single-nuclei strains were selected for pin-two hybridization, resulting in 21 hybrid strains. The biomass and protein content of 9 hybrid strains surpassed those of the original strains. One hybrid strain, H-5, exhibited remarkable mycelial protein production, boasting a mycelial growth rate of 26.5±0.7 mm/d, a biomass of 21.70±0.46 g/L, a protein content of 28.44±0.22%, and a protein promotion rate of 128.02±1.73%. Notably, both strains demonstrated about a 28% higher mycelial protein yield than the original strains, indicating comparable effectiveness between hybrid breeding and mutagenesis breeding. Finally, we analyzed the original and selected strains by molecular biological identification, which further proved the effectiveness of the breeding method. These findings present novel insights and serve as a reference for enhancing edible fungi breeding, offering promising avenues to meet the escalating protein demand.


Asunto(s)
Pleurotus , Mutagénesis , Pleurotus/genética , Hibridación de Ácido Nucleico , Micelio/genética
18.
Int J Obes (Lond) ; 48(6): 849-858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38341506

RESUMEN

OBJECTIVE: Fatty acids play a critical role in the proper functioning of the brain. This study investigated the effects of a high-fat (HF) diet on brain fatty acid profiles of offspring exposed to maternal gestational diabetes mellitus (GDM). METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish the GDM animal model. Brain fatty acid profiles of the offspring mice were measured by gas chromatography at weaning and adulthood. Protein expressions of the fatty acid transport pathway Wnt3/ß-catenin and the target protein major facilitator superfamily domain-containing 2a (MFSD2a) were measured in the offspring brain by Western blot. RESULTS: Maternal GDM increased the body weight of male offspring (P < 0.05). In weaning offspring, factorial analysis showed that maternal GDM increased the monounsaturated fatty acid (MUFA) percentage of the weaning offspring's brain (P < 0.05). Maternal GDM decreased offspring brain arachidonic acid (AA), but HF diet increased brain linoleic acid (LA) (P < 0.05). Maternal GDM and HF diet reduced offspring brain docosahexaenoic acid (DHA), and the male offspring had higher DHA than the female offspring (P < 0.05). In adult offspring, factorial analysis showed that HF diet increased brain MUFA in offspring, and male offspring had higher brain MUFA than female offspring (P < 0.05). The HF diet increased brain LA in the offspring. Male offspring had higher level of AA than female offspring (P < 0.05). HF diet reduced DHA in the brains of female offspring. The brain protein expression of ß-catenin and MFSD2a in both weaning and adult female offspring was lower in the HF + GDM group than in the CON group (P < 0.05). CONCLUSIONS: Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.


Asunto(s)
Encéfalo , Diabetes Gestacional , Dieta Alta en Grasa , Ácidos Grasos , Efectos Tardíos de la Exposición Prenatal , Animales , Embarazo , Femenino , Diabetes Gestacional/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Encéfalo/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Masculino , Ácidos Grasos/metabolismo , Modelos Animales de Enfermedad , Fenómenos Fisiologicos Nutricionales Maternos
19.
Small ; 20(27): e2303706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38353067

RESUMEN

Smart windows that can passively regulate incident solar radiation by dynamically modulating optical transmittance have attracted increasing scientific interest due to their potential economic and environmental savings. However, challenges remain in the global adoption of such systems, given the extreme variability in climatic and economic conditions across different geographical locations. Aiming these issues, a methylcellulose (MC) salt system is synthesized with high tunability for intrinsic optical transmittance (89.3%), which can be applied globally to various locations. Specifically, the MC window exhibits superior heat shielding potential below transition temperatures, becoming opaque at temperatures above the Lower Critical Solution Temperature and reducing the solar heat gain by 55%. This optical tunability is attributable to the particle size change triggered by the temperature-induced reversible coil-to-globular transition. This leads to effective refractive index and scattering modulation, making them prospective solutions for light management systems, an application ahead of intelligent fenestration systems. During the field tests, MC-based windows demonstrated a 9 °C temperature decrease compared to double-pane windows on sunny days and a 5 °C increase during winters, with simulations predicting an 11% energy savings. The ubiquitous availability of materials, low cost, and ease-of-manufacturing will provide technological equity and foster the ambition toward net-zero buildings.

20.
Regen Biomater ; 11: rbad117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223293

RESUMEN

Engineering myocardium has shown great clinal potential for repairing permanent myocardial injury. However, the lack of perfusing blood vessels and difficulties in preparing a thick-engineered myocardium result in its limited clinical use. We prepared a mixed gel containing fibrin (5 mg/ml) and collagen I (0.2 mg/ml) and verified that human umbilical vein endothelial cells (HUVECs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could form microvascular lumens and myocardial cell clusters by harnessing the low-hardness and hyperelastic characteristics of fibrin. hiPSC-CMs and HUVECs in the mixed gel formed self-organized cell clusters, which were then cultured in different media using a three-phase approach. The successfully constructed vascularized engineered myocardial tissue had a spherical structure and final diameter of 1-2 mm. The tissue exhibited autonomous beats that occurred at a frequency similar to a normal human heart rate. The internal microvascular lumen could be maintained for 6 weeks and showed good results during preliminary surface re-vascularization in vitro and vascular remodeling in vivo. In summary, we propose a simple method for constructing vascularized engineered myocardial tissue, through phased cultivation that does not rely on high-end manufacturing equipment and cutting-edge preparation techniques. The constructed tissue has potential value for clinical use after preliminary evaluation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA